Commit
·
2bf4af2
1
Parent(s):
95510f9
updated app with 101 + unknown trained classes
Browse files- app.py +7 -46
- vision_transformer.py +353 -0
app.py
CHANGED
|
@@ -31,36 +31,17 @@ effnetb0_model = create_effnetb0(
|
|
| 31 |
num_classes=2
|
| 32 |
)
|
| 33 |
|
| 34 |
-
# Load the ViT-Base/16 transformer with input image of
|
| 35 |
-
|
| 36 |
model_weights_dir=".",
|
| 37 |
-
model_weights_name="
|
| 38 |
-
img_size=224,
|
| 39 |
-
num_classes=num_classes,
|
| 40 |
-
compile=False
|
| 41 |
-
)
|
| 42 |
-
|
| 43 |
-
# Specify manual transforms for model_1
|
| 44 |
-
transforms_1 = v2.Compose([
|
| 45 |
-
v2.Resize((242, 242)),
|
| 46 |
-
v2.CenterCrop((224, 224)),
|
| 47 |
-
v2.ToImage(),
|
| 48 |
-
v2.ToDtype(torch.float32, scale=True),
|
| 49 |
-
v2.Normalize(mean=[0.485, 0.456, 0.406],
|
| 50 |
-
std=[0.229, 0.224, 0.225])
|
| 51 |
-
])
|
| 52 |
-
|
| 53 |
-
# Load the ViT-Base/16 transformer with input image of 384x384 pixels
|
| 54 |
-
vitbase_model_2 = create_vitbase_model(
|
| 55 |
-
model_weights_dir=".",
|
| 56 |
-
model_weights_name="vitbase16_2_2024-12-31.pth",
|
| 57 |
img_size=384,
|
| 58 |
num_classes=num_classes,
|
| 59 |
compile=True
|
| 60 |
)
|
| 61 |
|
| 62 |
# Specify manual transforms for model_2
|
| 63 |
-
|
| 64 |
v2.Resize(384), #v2.Resize((384, 384)),
|
| 65 |
v2.CenterCrop((384, 384)),
|
| 66 |
v2.ToImage(),
|
|
@@ -69,13 +50,10 @@ transforms_2 = v2.Compose([
|
|
| 69 |
std=[0.229, 0.224, 0.225])
|
| 70 |
])
|
| 71 |
|
|
|
|
| 72 |
# Put models into evaluation mode and turn on inference mode
|
| 73 |
effnetb0_model.eval()
|
| 74 |
-
|
| 75 |
-
vitbase_model_2.eval()
|
| 76 |
-
|
| 77 |
-
# Specify default ViT model
|
| 78 |
-
default_model = "Vision Transformer - 384x384 pixels (higher accuracy, slower predictions)" # "Vision Transformer - 224x224 pixels (lower accuracy, faster predictions)"
|
| 79 |
|
| 80 |
# Predict function
|
| 81 |
def predict(image) -> Tuple[Dict, str, str]:
|
|
@@ -86,14 +64,6 @@ def predict(image) -> Tuple[Dict, str, str]:
|
|
| 86 |
# Start the timer
|
| 87 |
start_time = timer()
|
| 88 |
|
| 89 |
-
# Select the appropriate model based on the user's choice
|
| 90 |
-
if default_model == "Vision Transformer - 384x384 pixels (higher accuracy, slower predictions)":
|
| 91 |
-
vitbase_model = vitbase_model_2
|
| 92 |
-
transforms = transforms_2
|
| 93 |
-
else:
|
| 94 |
-
vitbase_model = vitbase_model_1
|
| 95 |
-
transforms = transforms_1
|
| 96 |
-
|
| 97 |
# Transform the target image and add a batch dimension
|
| 98 |
image = transforms(image).unsqueeze(0)
|
| 99 |
|
|
@@ -104,14 +74,13 @@ def predict(image) -> Tuple[Dict, str, str]:
|
|
| 104 |
if effnetb0_model(image)[:,1].cpu() >= 0.9981166124343872:
|
| 105 |
|
| 106 |
# Pass the transformed image through the model and turn the prediction logits into prediction probabilities
|
| 107 |
-
pred_probs = torch.softmax(vitbase_model(image), dim=1)
|
| 108 |
|
| 109 |
# Calculate entropy
|
| 110 |
entropy = -torch.sum(pred_probs * torch.log(pred_probs), dim=1).item()
|
| 111 |
|
| 112 |
# Create a prediction label and prediction probability dictionary for each prediction class
|
| 113 |
pred_classes_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(num_classes)}
|
| 114 |
-
pred_classes_and_probs["unknown"] = 0.0
|
| 115 |
|
| 116 |
# Get the top predicted class
|
| 117 |
top_class = max(pred_classes_and_probs, key=pred_classes_and_probs.get)
|
|
@@ -164,14 +133,6 @@ A cutting-edge Vision Transformer (ViT) model to classify 101 delicious food typ
|
|
| 164 |
# Configure the upload image area
|
| 165 |
upload_input = gr.Image(type="pil", label="Upload Image", sources=['upload'], show_label=True, mirror_webcam=False)
|
| 166 |
|
| 167 |
-
# Configure the dropdown option
|
| 168 |
-
#model_dropdown = gr.Dropdown(
|
| 169 |
-
# choices=["Vision Transformer - 384x384 pixels (higher accuracy, slower predictions)",
|
| 170 |
-
# "Vision Transformer - 224x224 pixels (lower accuracy, faster predictions)"],
|
| 171 |
-
# value="Vision Transformer - 384x384 pixels (higher accuracy, slower predictions)",
|
| 172 |
-
# label="Select Model:"
|
| 173 |
-
#)
|
| 174 |
-
|
| 175 |
# Configure the sample image area
|
| 176 |
food_vision_examples = [["examples/" + example] for example in os.listdir("examples")]
|
| 177 |
|
|
|
|
| 31 |
num_classes=2
|
| 32 |
)
|
| 33 |
|
| 34 |
+
# Load the ViT-Base/16 transformer with input image of 384x384 pixels and 101 + unknown classes
|
| 35 |
+
vitbase_model = create_vitbase_model(
|
| 36 |
model_weights_dir=".",
|
| 37 |
+
model_weights_name="vitbase16_102_2025-01-03.pth",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
img_size=384,
|
| 39 |
num_classes=num_classes,
|
| 40 |
compile=True
|
| 41 |
)
|
| 42 |
|
| 43 |
# Specify manual transforms for model_2
|
| 44 |
+
transforms = v2.Compose([
|
| 45 |
v2.Resize(384), #v2.Resize((384, 384)),
|
| 46 |
v2.CenterCrop((384, 384)),
|
| 47 |
v2.ToImage(),
|
|
|
|
| 50 |
std=[0.229, 0.224, 0.225])
|
| 51 |
])
|
| 52 |
|
| 53 |
+
|
| 54 |
# Put models into evaluation mode and turn on inference mode
|
| 55 |
effnetb0_model.eval()
|
| 56 |
+
vitbase_model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
# Predict function
|
| 59 |
def predict(image) -> Tuple[Dict, str, str]:
|
|
|
|
| 64 |
# Start the timer
|
| 65 |
start_time = timer()
|
| 66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
# Transform the target image and add a batch dimension
|
| 68 |
image = transforms(image).unsqueeze(0)
|
| 69 |
|
|
|
|
| 74 |
if effnetb0_model(image)[:,1].cpu() >= 0.9981166124343872:
|
| 75 |
|
| 76 |
# Pass the transformed image through the model and turn the prediction logits into prediction probabilities
|
| 77 |
+
pred_probs = torch.softmax(vitbase_model(image), dim=1)
|
| 78 |
|
| 79 |
# Calculate entropy
|
| 80 |
entropy = -torch.sum(pred_probs * torch.log(pred_probs), dim=1).item()
|
| 81 |
|
| 82 |
# Create a prediction label and prediction probability dictionary for each prediction class
|
| 83 |
pred_classes_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(num_classes)}
|
|
|
|
| 84 |
|
| 85 |
# Get the top predicted class
|
| 86 |
top_class = max(pred_classes_and_probs, key=pred_classes_and_probs.get)
|
|
|
|
| 133 |
# Configure the upload image area
|
| 134 |
upload_input = gr.Image(type="pil", label="Upload Image", sources=['upload'], show_label=True, mirror_webcam=False)
|
| 135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
# Configure the sample image area
|
| 137 |
food_vision_examples = [["examples/" + example] for example in os.listdir("examples")]
|
| 138 |
|
vision_transformer.py
CHANGED
|
@@ -1,8 +1,361 @@
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import torchvision
|
| 3 |
import torch._dynamo
|
|
|
|
|
|
|
| 4 |
from torch import nn
|
|
|
|
| 5 |
from torch.nn.init import trunc_normal_, xavier_normal_, zeros_, orthogonal_, kaiming_normal_
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
# Create Pytorch's default ViT models
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
import torch
|
| 4 |
import torchvision
|
| 5 |
import torch._dynamo
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
from typing import List
|
| 8 |
from torch import nn
|
| 9 |
+
from torch.utils.data import DataLoader
|
| 10 |
from torch.nn.init import trunc_normal_, xavier_normal_, zeros_, orthogonal_, kaiming_normal_
|
| 11 |
+
from torchvision import datasets
|
| 12 |
+
from torchvision.transforms import v2
|
| 13 |
+
|
| 14 |
+
def display_random_images(dataset: torch.utils.data.dataset.Dataset, # or torchvision.datasets.ImageFolder?
|
| 15 |
+
classes: List[str] = None,
|
| 16 |
+
n: int = 10,
|
| 17 |
+
display_shape: bool = True,
|
| 18 |
+
rows: int = 5,
|
| 19 |
+
cols: int = 5,
|
| 20 |
+
seed: int = None):
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
"""Displays a number of random images from a given dataset.
|
| 24 |
+
|
| 25 |
+
Args:
|
| 26 |
+
dataset (torch.utils.data.dataset.Dataset): Dataset to select random images from.
|
| 27 |
+
classes (List[str], optional): Names of the classes. Defaults to None.
|
| 28 |
+
n (int, optional): Number of images to display. Defaults to 10.
|
| 29 |
+
display_shape (bool, optional): Whether to display the shape of the image tensors. Defaults to True.
|
| 30 |
+
rows: number of rows of the subplot
|
| 31 |
+
cols: number of columns of the subplot
|
| 32 |
+
seed (int, optional): The seed to set before drawing random images. Defaults to None.
|
| 33 |
+
|
| 34 |
+
Usage:
|
| 35 |
+
display_random_images(train_data,
|
| 36 |
+
n=16,
|
| 37 |
+
classes=class_names,
|
| 38 |
+
rows=4,
|
| 39 |
+
cols=4,
|
| 40 |
+
display_shape=False,
|
| 41 |
+
seed=None)
|
| 42 |
+
"""
|
| 43 |
+
|
| 44 |
+
# Setup the range to select images
|
| 45 |
+
n = min(n, len(dataset))
|
| 46 |
+
# Adjust display if n too high
|
| 47 |
+
if n > rows*cols:
|
| 48 |
+
n = rows*cols
|
| 49 |
+
#display_shape = False
|
| 50 |
+
print(f"For display purposes, n shouldn't be larger than {rows*cols}, setting to {n} and removing shape display.")
|
| 51 |
+
|
| 52 |
+
# Set random seed
|
| 53 |
+
if seed:
|
| 54 |
+
random.seed(seed)
|
| 55 |
+
|
| 56 |
+
# Get random sample indexes
|
| 57 |
+
random_samples_idx = random.sample(range(len(dataset)), k=n)
|
| 58 |
+
|
| 59 |
+
# Setup plot
|
| 60 |
+
plt.figure(figsize=(cols*4, rows*4))
|
| 61 |
+
|
| 62 |
+
#Loop through samples and display random samples
|
| 63 |
+
for i, targ_sample in enumerate(random_samples_idx):
|
| 64 |
+
targ_image, targ_label = dataset[targ_sample][0], dataset[targ_sample][1]
|
| 65 |
+
|
| 66 |
+
# 7. Adjust image tensor shape for plotting: [color_channels, height, width] -> [color_channels, height, width]
|
| 67 |
+
targ_image_adjust = targ_image.permute(1, 2, 0)
|
| 68 |
+
|
| 69 |
+
# Plot adjusted samples
|
| 70 |
+
plt.subplot(rows, cols, i+1)
|
| 71 |
+
plt.imshow(targ_image_adjust)
|
| 72 |
+
plt.axis("off")
|
| 73 |
+
if classes:
|
| 74 |
+
title = f"class: {classes[targ_label]}"
|
| 75 |
+
if display_shape:
|
| 76 |
+
title = title + f"\nshape: {targ_image_adjust.shape}"
|
| 77 |
+
plt.title(title)
|
| 78 |
+
|
| 79 |
+
def create_dataloaders(
|
| 80 |
+
train_dir: str,
|
| 81 |
+
test_dir: str,
|
| 82 |
+
train_transform: v2.Compose,
|
| 83 |
+
test_transform: v2.Compose,
|
| 84 |
+
batch_size: int,
|
| 85 |
+
num_workers: int=os.cpu_count()
|
| 86 |
+
):
|
| 87 |
+
"""Creates training and testing DataLoaders.
|
| 88 |
+
|
| 89 |
+
Takes in a training directory and testing directory path and turns
|
| 90 |
+
them into PyTorch Datasets and then into PyTorch DataLoaders.
|
| 91 |
+
|
| 92 |
+
Args:
|
| 93 |
+
train_dir: Path to training directory.
|
| 94 |
+
test_dir: Path to testing directory.
|
| 95 |
+
train_transform: torchvision transforms to perform on training data.
|
| 96 |
+
test_transform: torchvision transforms to perform on test data.
|
| 97 |
+
batch_size: Number of samples per batch in each of the DataLoaders.
|
| 98 |
+
num_workers: An integer for number of workers per DataLoader.
|
| 99 |
+
|
| 100 |
+
Returns:
|
| 101 |
+
A tuple of (train_dataloader, test_dataloader, class_names).
|
| 102 |
+
Where class_names is a list of the target classes.
|
| 103 |
+
Example usage:
|
| 104 |
+
train_dataloader, test_dataloader, class_names = \
|
| 105 |
+
= create_dataloaders(train_dir=path/to/train_dir,
|
| 106 |
+
test_dir=path/to/test_dir,
|
| 107 |
+
transform=some_transform,
|
| 108 |
+
batch_size=32,
|
| 109 |
+
num_workers=4)
|
| 110 |
+
"""
|
| 111 |
+
# Use ImageFolder to create dataset(s)
|
| 112 |
+
train_data = datasets.ImageFolder(train_dir, transform=train_transform)
|
| 113 |
+
test_data = datasets.ImageFolder(test_dir, transform=test_transform)
|
| 114 |
+
|
| 115 |
+
# Get class names
|
| 116 |
+
class_names = train_data.classes
|
| 117 |
+
|
| 118 |
+
# Turn images into data loaders
|
| 119 |
+
train_dataloader = DataLoader(
|
| 120 |
+
train_data,
|
| 121 |
+
batch_size=batch_size,
|
| 122 |
+
shuffle=True,
|
| 123 |
+
num_workers=num_workers,
|
| 124 |
+
pin_memory=True, #enables fast data transfers to CUDA-enabled GPU
|
| 125 |
+
)
|
| 126 |
+
test_dataloader = DataLoader(
|
| 127 |
+
test_data,
|
| 128 |
+
batch_size=batch_size,
|
| 129 |
+
shuffle=False,
|
| 130 |
+
num_workers=num_workers,
|
| 131 |
+
pin_memory=True, #enables fast data transfers to CUDA-enabled GPU
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
return train_dataloader, test_dataloader, class_names
|
| 135 |
+
|
| 136 |
+
def create_dataloader_for_vit(
|
| 137 |
+
vit_model: str="bitbase16",
|
| 138 |
+
train_dir: str="./",
|
| 139 |
+
test_dir: str="./",
|
| 140 |
+
batch_size: int=64,
|
| 141 |
+
aug: bool=True,
|
| 142 |
+
display_imgs: bool=True,
|
| 143 |
+
num_workers: int=os.cpu_count()
|
| 144 |
+
):
|
| 145 |
+
|
| 146 |
+
"""
|
| 147 |
+
Creates data loaders for the training and test datasets to be used to traing visiton transformers.
|
| 148 |
+
|
| 149 |
+
Args:
|
| 150 |
+
vit_model (str): The name of the ViT model to use. Default is "bitbase16".
|
| 151 |
+
train_dir (str): The path to the training dataset directory. Default is TRAIN_DIR.
|
| 152 |
+
test_dir (str): The path to the test dataset directory. Default is TEST_DIR.
|
| 153 |
+
batch_size (int): The batch size for the data loaders. Default is BATCH_SIZE.
|
| 154 |
+
aug (bool): Whether to apply data augmentation or not. Default is True.
|
| 155 |
+
display_imgs (bool): Whether to display sample images or not. Default is True.
|
| 156 |
+
|
| 157 |
+
Returns:
|
| 158 |
+
train_dataloader (torch.utils.data.DataLoader): The data loader for the training dataset.
|
| 159 |
+
test_dataloader (torch.utils.data.DataLoader): The data loader for the test dataset.
|
| 160 |
+
class_names (list): A list of class names.
|
| 161 |
+
"""
|
| 162 |
+
|
| 163 |
+
IMG_SIZE = 224
|
| 164 |
+
IMG_SIZE_2 = 384
|
| 165 |
+
|
| 166 |
+
# Manual transforms for the training dataset
|
| 167 |
+
manual_transforms = v2.Compose([
|
| 168 |
+
v2.RandomCrop((IMG_SIZE, IMG_SIZE)),
|
| 169 |
+
v2.ToImage(),
|
| 170 |
+
v2.ToDtype(torch.float32, scale=True),
|
| 171 |
+
])
|
| 172 |
+
|
| 173 |
+
# ViT-Base/16 transforms
|
| 174 |
+
if vit_model == "vitbase16":
|
| 175 |
+
|
| 176 |
+
# Manual transforms for the training dataset
|
| 177 |
+
if aug:
|
| 178 |
+
manual_transforms_train_vitb = v2.Compose([
|
| 179 |
+
v2.TrivialAugmentWide(),
|
| 180 |
+
v2.Resize((256, 256)),
|
| 181 |
+
v2.RandomCrop((IMG_SIZE, IMG_SIZE)),
|
| 182 |
+
v2.ToImage(),
|
| 183 |
+
v2.ToDtype(torch.float32, scale=True),
|
| 184 |
+
v2.Normalize(mean=[0.485, 0.456, 0.406],
|
| 185 |
+
std=[0.229, 0.224, 0.225])
|
| 186 |
+
])
|
| 187 |
+
else:
|
| 188 |
+
manual_transforms_train_vitb = v2.Compose([
|
| 189 |
+
v2.Resize((256, 256)),
|
| 190 |
+
v2.CenterCrop((IMG_SIZE, IMG_SIZE)),
|
| 191 |
+
v2.ToImage(),
|
| 192 |
+
v2.ToDtype(torch.float32, scale=True),
|
| 193 |
+
v2.Normalize(mean=[0.485, 0.456, 0.406],
|
| 194 |
+
std=[0.229, 0.224, 0.225])
|
| 195 |
+
])
|
| 196 |
+
|
| 197 |
+
# Manual transforms for the test dataset
|
| 198 |
+
manual_transforms_test_vitb = v2.Compose([
|
| 199 |
+
v2.Resize((256, 256)),
|
| 200 |
+
v2.CenterCrop((IMG_SIZE, IMG_SIZE)),
|
| 201 |
+
v2.ToImage(),
|
| 202 |
+
v2.ToDtype(torch.float32, scale=True),
|
| 203 |
+
v2.Normalize(mean=[0.485, 0.456, 0.406],
|
| 204 |
+
std=[0.229, 0.224, 0.225])
|
| 205 |
+
])
|
| 206 |
+
|
| 207 |
+
# Create data loaders for ViT-Base
|
| 208 |
+
train_dataloader, test_dataloader, class_names = create_dataloaders(
|
| 209 |
+
train_dir=train_dir,
|
| 210 |
+
test_dir=test_dir,
|
| 211 |
+
train_transform=manual_transforms_train_vitb,
|
| 212 |
+
test_transform=manual_transforms_test_vitb,
|
| 213 |
+
batch_size=batch_size,
|
| 214 |
+
num_workers=num_workers
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
if vit_model == "vitbase16_2":
|
| 218 |
+
|
| 219 |
+
# Manual transforms for the training dataset
|
| 220 |
+
if aug:
|
| 221 |
+
manual_transforms_train_vitb = v2.Compose([
|
| 222 |
+
v2.TrivialAugmentWide(),
|
| 223 |
+
v2.Resize((IMG_SIZE_2, IMG_SIZE_2)),
|
| 224 |
+
v2.CenterCrop((IMG_SIZE_2, IMG_SIZE_2)),
|
| 225 |
+
v2.ToImage(),
|
| 226 |
+
v2.ToDtype(torch.float32, scale=True),
|
| 227 |
+
v2.Normalize(mean=[0.485, 0.456, 0.406],
|
| 228 |
+
std=[0.229, 0.224, 0.225])
|
| 229 |
+
])
|
| 230 |
+
else:
|
| 231 |
+
manual_transforms_train_vitb = v2.Compose([
|
| 232 |
+
v2.Resize((IMG_SIZE_2, IMG_SIZE_2)),
|
| 233 |
+
v2.CenterCrop((IMG_SIZE_2, IMG_SIZE_2)),
|
| 234 |
+
v2.ToImage(),
|
| 235 |
+
v2.ToDtype(torch.float32, scale=True),
|
| 236 |
+
v2.Normalize(mean=[0.485, 0.456, 0.406],
|
| 237 |
+
std=[0.229, 0.224, 0.225])
|
| 238 |
+
])
|
| 239 |
+
|
| 240 |
+
# Manual transforms for the test dataset
|
| 241 |
+
manual_transforms_test_vitb = v2.Compose([
|
| 242 |
+
v2.Resize((IMG_SIZE_2, IMG_SIZE_2)),
|
| 243 |
+
v2.CenterCrop((IMG_SIZE_2, IMG_SIZE_2)),
|
| 244 |
+
v2.ToImage(),
|
| 245 |
+
v2.ToDtype(torch.float32, scale=True),
|
| 246 |
+
v2.Normalize(mean=[0.485, 0.456, 0.406],
|
| 247 |
+
std=[0.229, 0.224, 0.225])
|
| 248 |
+
])
|
| 249 |
+
|
| 250 |
+
# Create data loaders for ViT-Base
|
| 251 |
+
train_dataloader, test_dataloader, class_names = create_dataloaders(
|
| 252 |
+
train_dir=train_dir,
|
| 253 |
+
test_dir=test_dir,
|
| 254 |
+
train_transform=manual_transforms_train_vitb,
|
| 255 |
+
test_transform=manual_transforms_test_vitb,
|
| 256 |
+
batch_size=batch_size,
|
| 257 |
+
num_workers=num_workers
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
# ViT-Large/16 transforms
|
| 261 |
+
elif vit_model == "vitlarge16":
|
| 262 |
+
|
| 263 |
+
# Manual transforms for the training dataset
|
| 264 |
+
if aug:
|
| 265 |
+
manual_transforms_train_vitl = v2.Compose([
|
| 266 |
+
v2.TrivialAugmentWide(),
|
| 267 |
+
v2.Resize((242, 242)),
|
| 268 |
+
v2.RandomCrop((IMG_SIZE, IMG_SIZE)),
|
| 269 |
+
v2.ToImage(),
|
| 270 |
+
v2.ToDtype(torch.float32, scale=True),
|
| 271 |
+
v2.Normalize(mean=[0.485, 0.456, 0.406],
|
| 272 |
+
std=[0.229, 0.224, 0.225])
|
| 273 |
+
])
|
| 274 |
+
else:
|
| 275 |
+
manual_transforms_train_vitl = v2.Compose([
|
| 276 |
+
v2.Resize((242, 242)),
|
| 277 |
+
v2.CenterCrop((IMG_SIZE, IMG_SIZE)),
|
| 278 |
+
v2.ToImage(),
|
| 279 |
+
v2.ToDtype(torch.float32, scale=True),
|
| 280 |
+
v2.Normalize(mean=[0.485, 0.456, 0.406],
|
| 281 |
+
std=[0.229, 0.224, 0.225])
|
| 282 |
+
])
|
| 283 |
+
|
| 284 |
+
# Manual transforms for the test dataset
|
| 285 |
+
manual_transforms_test_vitl = v2.Compose([
|
| 286 |
+
v2.Resize((242, 242)),
|
| 287 |
+
v2.CenterCrop((IMG_SIZE, IMG_SIZE)),
|
| 288 |
+
v2.ToImage(),
|
| 289 |
+
v2.ToDtype(torch.float32, scale=True),
|
| 290 |
+
v2.Normalize(mean=[0.485, 0.456, 0.406],
|
| 291 |
+
std=[0.229, 0.224, 0.225])
|
| 292 |
+
])
|
| 293 |
+
|
| 294 |
+
# Create data loaders for ViT-Large/16
|
| 295 |
+
train_dataloader, test_dataloader, class_names = create_dataloaders(
|
| 296 |
+
train_dir=train_dir,
|
| 297 |
+
test_dir=test_dir,
|
| 298 |
+
train_transform=manual_transforms_train_vitl,
|
| 299 |
+
test_transform=manual_transforms_test_vitl,
|
| 300 |
+
batch_size=batch_size,
|
| 301 |
+
num_workers=num_workers
|
| 302 |
+
)
|
| 303 |
+
|
| 304 |
+
# ViT-Large/32 transforms
|
| 305 |
+
else:
|
| 306 |
+
# Manual transforms for the training dataset
|
| 307 |
+
if aug:
|
| 308 |
+
manual_transforms_train_vitl = v2.Compose([
|
| 309 |
+
v2.TrivialAugmentWide(),
|
| 310 |
+
v2.Resize((256, 256)),
|
| 311 |
+
v2.RandomCrop((IMG_SIZE, IMG_SIZE)),
|
| 312 |
+
v2.ToImage(),
|
| 313 |
+
v2.ToDtype(torch.float32, scale=True),
|
| 314 |
+
v2.Normalize(mean=[0.485, 0.456, 0.406],
|
| 315 |
+
std=[0.229, 0.224, 0.225])
|
| 316 |
+
])
|
| 317 |
+
else:
|
| 318 |
+
manual_transforms_train_vitl = v2.Compose([
|
| 319 |
+
v2.Resize((256, 256)),
|
| 320 |
+
v2.CenterCrop((IMG_SIZE, IMG_SIZE)),
|
| 321 |
+
v2.ToImage(),
|
| 322 |
+
v2.ToDtype(torch.float32, scale=True),
|
| 323 |
+
v2.Normalize(mean=[0.485, 0.456, 0.406],
|
| 324 |
+
std=[0.229, 0.224, 0.225])
|
| 325 |
+
])
|
| 326 |
+
|
| 327 |
+
# Manual transforms for the test dataset
|
| 328 |
+
manual_transforms_test_vitl = v2.Compose([
|
| 329 |
+
v2.Resize((256, 256)),
|
| 330 |
+
v2.CenterCrop((IMG_SIZE, IMG_SIZE)),
|
| 331 |
+
v2.ToImage(),
|
| 332 |
+
v2.ToDtype(torch.float32, scale=True),
|
| 333 |
+
v2.Normalize(mean=[0.485, 0.456, 0.406],
|
| 334 |
+
std=[0.229, 0.224, 0.225])
|
| 335 |
+
])
|
| 336 |
+
|
| 337 |
+
# Create data loaders for ViT-Large/32
|
| 338 |
+
train_dataloader, test_dataloader, class_names = create_dataloaders(
|
| 339 |
+
train_dir=train_dir,
|
| 340 |
+
test_dir=test_dir,
|
| 341 |
+
train_transform=manual_transforms_train_vitl,
|
| 342 |
+
test_transform=manual_transforms_test_vitl,
|
| 343 |
+
batch_size=batch_size,
|
| 344 |
+
num_workers=num_workers
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
+
# Display images
|
| 348 |
+
if display_imgs:
|
| 349 |
+
train_data = datasets.ImageFolder(train_dir, transform=manual_transforms)
|
| 350 |
+
display_random_images(train_data,
|
| 351 |
+
n=25,
|
| 352 |
+
classes=class_names,
|
| 353 |
+
rows=5,
|
| 354 |
+
cols=5,
|
| 355 |
+
display_shape=False,
|
| 356 |
+
seed=None)
|
| 357 |
+
|
| 358 |
+
return train_dataloader, test_dataloader, class_names
|
| 359 |
|
| 360 |
|
| 361 |
# Create Pytorch's default ViT models
|