File size: 18,721 Bytes
9896569
60344c1
 
 
 
 
9896569
60344c1
9896569
60344c1
 
3e254b1
60344c1
 
 
9896569
60344c1
 
9896569
60344c1
 
 
9896569
60344c1
 
 
9896569
60344c1
 
 
 
9896569
60344c1
 
 
9896569
60344c1
 
 
2141c17
60344c1
2141c17
8cdaf72
60344c1
9896569
 
2141c17
 
 
 
60344c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9896569
60344c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9896569
60344c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9896569
 
60344c1
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
import gradio as gr
import logging
from datetime import datetime
from pathlib import Path
from scripts.RepositoryHandler import RepositoryHandler
import os

os.environ["CUDA_VISIBLE_DEVICES"] = "7"

# --- Setup Logging ---
def setup_logger():
    log_dir = Path("logs")
    log_dir.mkdir(parents=True, exist_ok=True)
    timestamp = datetime.now().strftime("%Y%m%d_%H%M")
    log_file = log_dir / f"{timestamp}_code_compass.log"

    logger = logging.getLogger("code_compass")
    logger.setLevel(logging.DEBUG)

    # Console handler
    ch = logging.StreamHandler()
    ch.setLevel(logging.INFO)

    # File handler
    fh = logging.FileHandler(log_file)
    fh.setLevel(logging.DEBUG)

    # Formatter
    formatter = logging.Formatter("%(asctime)s [%(levelname)s] %(message)s")
    ch.setFormatter(formatter)
    fh.setFormatter(formatter)

    logger.addHandler(ch)
    logger.addHandler(fh)
    return logger

setup_logger()
logger = logging.getLogger("code_compass")
# Global repository handler instance
logger.info("Checking for model...")
if not os.path.exists("models/Qwen2.5-Coder-7B-Instruct-Q4_K_M.gguf"):
    logger.info("Downloading model...")
    Path("models").mkdir(parents=True, exist_ok=True)
    os.system("wget -q https://huggingface.co/bartowski/Qwen2.5-Coder-7B-Instruct-GGUF/resolve/main/Qwen2.5-Coder-7B-Instruct-Q4_K_M.gguf -O models/Qwen2.5-Coder-7B-Instruct-Q4_K_M.gguf")



repo_handler = RepositoryHandler()


def process_repository(input_type, github_url, zip_file):
    """Process repository based on input type"""
    
    # Clean up any previous repository
    repo_handler.cleanup()
    
    if input_type == "GitHub URL":
        if not github_url or not github_url.strip():
            return "❌ Please enter a GitHub repository URL", "", "disabled", "disabled"
        
        if not repo_handler.validate_github_url(github_url.strip()):
            return "❌ Invalid GitHub URL format. Please use: https://github.com/username/repository", "", "disabled", "disabled"
        
        success, message = repo_handler.download_github_repo(github_url.strip())
        
    else:  # ZIP File
        if zip_file is None:
            return "❌ Please upload a ZIP file", "", "disabled", "disabled"
        
        is_valid, validation_msg = repo_handler.validate_zip_file(zip_file)
        if not is_valid:
            return f"❌ {validation_msg}", "", "disabled", "disabled"
        
        success, message = repo_handler.extract_zip_file(zip_file)
    
    if success:
        structure = repo_handler.get_repo_structure()
        return message, structure, "πŸš€ Process Repository", "disabled"  # Enable process button, keep query disabled
    else:
        return message, "", "disabled", "disabled"

def process_chunks():
    """Process repository into chunks and store in vector database"""
    if not repo_handler.is_loaded:
        return "❌ No repository loaded", "disabled"
    
    # Run processing in background thread to avoid blocking UI
    def background_processing():
        return repo_handler.process_and_store_chunks()
    
    try:
        success, message = background_processing()
        if success:
            return message, "Ask AI"  # Enable query functionality
        else:
            return message, "disabled"
    except Exception as e:
        return f"❌ Error processing chunks: {str(e)}", "disabled"

def handle_query(query):
    """Handle user queries about the repository"""
    if not repo_handler.is_loaded:
        return "❌ No repository loaded. Please load a repository first."
    
    if not repo_handler.chunks:
        return "❌ Repository not processed yet. Please click 'Process Repository' first."
    
    if not query or not query.strip():
        return "Please enter a query about the repository."
    
    return repo_handler.query_repository(query.strip())

def get_repo_stats():
    """Get repository statistics for display"""
    if not repo_handler.is_loaded:
        return "No repository loaded"
    
    if repo_handler.vector_store and repo_handler.chunks:
        try:
            # Get repository overview from vector store
            overview = repo_handler.vector_store.get_repository_overview(repo_handler.repo_name)
            logger.debug(f"Repository overview: {overview}")
            if "error" not in overview:
                stats = f"""πŸ“Š **Repository Statistics**

🏷️ **Repository:** {overview['repo_name']}
πŸ“¦ **Total Chunks:** {overview['total_chunks']}
πŸ“ **Files:** {overview['files_count']}
πŸ›οΈ **Classes:** {overview['classes_count']}  
βš™οΈ **Functions:** {overview['functions_count']}
πŸ’» **Languages:** {', '.join(overview['languages'])}

πŸ“‹ **Chunk Distribution:**
"""
                for chunk_type, count in overview['chunk_distribution'].items():
                    stats += f"- {chunk_type.title()}: {count}\n"
                
                return stats
            else:
                return f"Error getting stats: {overview['error']}"
        except Exception as e:
            return f"Error getting repository stats: {str(e)}"
    
    return "Repository loaded but not processed yet"
# Additional handler functions for LLM integration
def initialize_llm():
    """Initialize LLM model loading"""
    return repo_handler.initialize_llm()

def handle_query_with_llm(query, use_llm):
    """Handle user queries with optional LLM processing"""
    if not repo_handler.is_loaded:
        return "❌ No repository loaded. Please load a repository first."
    
    if not repo_handler.chunks:
        return "❌ Repository not processed yet. Please click 'Process Repository' first."
    
    if not query or not query.strip():
        return "Please enter a query about the repository."
    
    return repo_handler.query_repository(query.strip(), use_llm=use_llm)

def clear_conversation():
    """Clear LLM conversation history"""
    if repo_handler.llm:
        repo_handler.llm.clear_conversation()
        return "πŸ—‘οΈ Conversation history cleared!"
    return "❌ LLM not initialized"

def export_conversation():
    """Export conversation history"""
    if repo_handler.llm and repo_handler.llm.is_model_ready():
        conversation = repo_handler.llm.export_conversation()
        if conversation:
            # Format for display
            export_text = "# Conversation Export\n\n"
            for msg in conversation:
                role_emoji = {"system": "βš™οΈ", "user": "πŸ‘€", "assistant": "πŸ€–"}.get(msg["role"], "πŸ’¬")
                export_text += f"## {role_emoji} {msg['role'].title()}\n"
                export_text += f"**Time:** {msg['timestamp']}\n\n"
                export_text += f"{msg['content']}\n\n---\n\n"
            return export_text
        else:
            return "No conversation to export"
    return "❌ LLM not ready or no conversation history"

def get_llm_status():
    """Get current LLM status"""
    if not repo_handler.llm_loading_started:
        return "πŸ”„ LLM not initialized"
    elif repo_handler.llm.is_model_ready():
        model_info = repo_handler.llm.get_model_info()
        conversation_summary = repo_handler.llm.get_conversation_summary()
        return f"""βœ… **LLM Ready!**
        
**Model:** Qwen2.5-Coder-7B-Instruct (Q4_K_M)
**Context Window:** {model_info['context_window']} tokens
**Temperature:** {model_info['temperature']}
**Status:** {conversation_summary}

πŸ€– Ready for intelligent code analysis!"""
    else:
        return "⏳ **LLM Loading...** Please wait for model initialization to complete."

def create_interface():
    """Create the Gradio interface"""
    
    with gr.Blocks(title="Code Compass", theme=gr.themes.Soft()) as demo:
        
        gr.Markdown("""
        # πŸ” Code Compass
        
        Upload your repository via GitHub URL or ZIP file, process it with AI-powered chunking, and query your codebase using semantic search!
        """)
        
        with gr.Row():
            with gr.Column(scale=2):
                
                # Input section
                with gr.Group():
                    gr.Markdown("### πŸ“₯ Repository Input")
                    
                    input_type = gr.Dropdown(
                        choices=["GitHub URL", "ZIP File"], 
                        value="GitHub URL",
                        label="Input Method",
                        info="Choose how you want to provide your repository"
                    )
                    
                    github_url = gr.Textbox(
                        label="GitHub Repository URL",
                        placeholder="https://github.com/username/repository",
                        visible=True
                    )
                    
                    zip_file = gr.File(
                        label="Upload ZIP File",
                        file_types=[".zip"],
                        visible=False
                    )
                    
                    load_btn = gr.Button("πŸ“ Load Repository", variant="primary")
                
                # Processing section
                with gr.Group():
                    gr.Markdown("### βš™οΈ Repository Processing")
                    gr.Markdown("After loading, process your repository to enable AI-powered search")
                    
                    process_btn = gr.Button("πŸš€ Process Repository", interactive=False, variant="secondary")
                    
                # Status section
                with gr.Group():
                    gr.Markdown("### πŸ“Š Status")
                    status_output = gr.Textbox(
                        label="Status",
                        placeholder="Ready to load repository...",
                        interactive=False,
                        lines=3
                    )
            
            with gr.Column(scale=1):
                with gr.Group():
                    gr.Markdown("### πŸ“ Repository Structure")
                    structure_output = gr.Code(
                        label="Directory Structure",
                        # language="text",
                        interactive=False,
                        lines=10
                    )
                
                with gr.Group():
                    gr.Markdown("### πŸ“Š Repository Stats")
                    stats_output = gr.Markdown(
                        value="Load and process a repository to see statistics"
                    )
                with gr.Group():
                    gr.Markdown("### πŸ€– LLM Status")
                    llm_status = gr.Markdown(
                        value="πŸ”„ LLM not initialized"
                    )
                    init_llm_btn = gr.Button("πŸš€ Initialize LLM", variant="secondary")
        # Query section
        with gr.Row():
            with gr.Column():
                gr.Markdown("### πŸ’¬ Query Repository")
                gr.Markdown("Ask questions about your code using natural language. The AI will search through your processed code chunks to find relevant information.")
                
                with gr.Row():
                    query_input = gr.Textbox(
                        label="Ask about your code",
                        placeholder="e.g., 'What does this repository do?', 'Show me authentication functions', 'How is error handling implemented?'",
                        lines=2,
                        scale=4
                    )
                    query_btn = gr.Button("πŸ” Ask Question", interactive=False, scale=1)
                    use_llm_toggle = gr.Checkbox(
                            label="Use AI Analysis",
                            value=True,
                            info="Get intelligent responses using LLM"
                        )
                    # Conversation controls
                with gr.Row():
                    clear_chat_btn = gr.Button("πŸ—‘οΈ Clear Chat History", variant="secondary", interactive=False)
                    export_chat_btn = gr.Button("πŸ“₯ Export Chat", variant="secondary", interactive=False)
                query_output = gr.Markdown(
                    value="Load and process a repository first to start querying...",
                    height=400
                )
        
        # Advanced options (collapsible)
        # with gr.Accordion("πŸ› οΈ Advanced Options", open=False):
        #     with gr.Row():
        #         with gr.Column():
        #             gr.Markdown("### πŸ”§ Pinecone Configuration")
        #             api_key_input = gr.Textbox(
        #                 label="Pinecone API Key",
        #                 placeholder="Enter your Pinecone API key (or set PINECONE_API_KEY env var)",
        #                 type="password"
        #             )
        #             environment_input = gr.Textbox(
        #                 label="Pinecone Environment",
        #                 value="us-west1-gcp-free",
        #                 placeholder="e.g., us-west1-gcp-free"
        #             )
                
        #         with gr.Column():
        #             gr.Markdown("### πŸ“ˆ Processing Options")
        #             complexity_threshold = gr.Slider(
        #                 minimum=5,
        #                 maximum=50,
        #                 value=20,
        #                 step=5,
        #                 label="Complexity Threshold",
        #                 info="Functions above this complexity will be sub-chunked"
        #             )
        
        # Event handlers
        def toggle_inputs(choice):
            return (
                gr.update(visible=(choice == "GitHub URL")),
                gr.update(visible=(choice == "ZIP File"))
            )
        
        def update_buttons_after_load(status_text):
            # Enable process button if repository is successfully loaded
            is_loaded = "βœ…" in status_text and "successfully" in status_text.lower()
            return gr.update(interactive=is_loaded)
        
        def update_query_button_after_process(status_text):
            # Enable query button if processing is successful
            is_processed = "βœ…" in status_text and "complete" in status_text.lower()
            return gr.update(interactive=is_processed)
        
        def update_buttons_after_process(status_text):
            # Enable query button if processing is successful
            is_processed = "βœ…" in status_text and "complete" in status_text.lower()
            return (
                gr.update(interactive=is_processed),  # query_btn
                gr.update(interactive=is_processed),  # clear_chat_btn  
                gr.update(interactive=is_processed)   # export_chat_btn
            )
        
        def update_llm_status():
            return get_llm_status()
        
        def update_stats(status_output):
            return get_repo_stats(), update_buttons_after_load(status_output), update_query_button_after_process(status_output)
        
        # Wire up the interface
        input_type.change(
            fn=toggle_inputs,
            inputs=[input_type],
            outputs=[github_url, zip_file]
        )
        
        load_btn.click(
            fn=process_repository,
            inputs=[input_type, github_url, zip_file],
            outputs=[status_output, structure_output, process_btn, query_btn]
        ).then(
            fn=update_stats,
            inputs=[status_output],
            outputs=[stats_output, process_btn, query_btn]
        )
        
        process_btn.click(
            fn=process_chunks,
            outputs=[status_output, query_btn]
        ).then(
            fn=update_stats,
            inputs=[status_output],
            outputs=[stats_output, process_btn, query_btn]
        )
        
        # Query handling
        query_btn.click(
            fn=handle_query_with_llm,
            inputs=[query_input, use_llm_toggle],
            outputs=[query_output]
        ).then(
            fn=update_llm_status,
            outputs=[llm_status]
        )
        
        # Chat management
        clear_chat_btn.click(
            fn=clear_conversation,
            outputs=[query_output]
        ).then(
            fn=update_llm_status,
            outputs=[llm_status]
        )
        
        # Allow Enter key to submit query
        query_input.submit(
            fn=handle_query_with_llm,
            inputs=[query_input, use_llm_toggle],
            outputs=[query_output]
        )
         # LLM initialization
        init_llm_btn.click(
            fn=initialize_llm,
            outputs=[llm_status]
        ).then(
            fn=update_llm_status,
            outputs=[llm_status]
        )
        # Add some helpful examples
        gr.Markdown("""
        ### πŸ“ Example Repositories to Try:
        - `https://github.com/pallets/flask` - Popular Python web framework
        - `https://github.com/requests/requests` - HTTP library for Python
        - `https://github.com/fastapi/fastapi` - Modern Python web framework
        - `https://github.com/psf/black` - Python code formatter
        
        ### πŸ’‘ Example Queries:
        - "What is the main purpose of this repository?"
        - "Show me all the authentication functions"
        - "How is error handling implemented?"
        - "What are the main classes and their responsibilities?"  
        - "Find functions that handle file operations"
        - "Show me the configuration management code"
        
        ### βš™οΈ Setup Requirements:
        1. **Pinecone API Key**: Get a free API key from [Pinecone.io](https://www.pinecone.io/)
        2. **Environment Variables**: Set `PINECONE_API_KEY` in your environment or enter it in Advanced Options
        3. **Internet Connection**: Required for downloading repositories and accessing Pinecone
        
        ### πŸš€ How It Works:
        1. **Load**: Repository is downloaded/extracted and validated
        2. **Process**: Code is analyzed and split into hierarchical chunks (file β†’ class β†’ function β†’ block)
        3. **Store**: Chunks are embedded using AI and stored in Pinecone vector database  
        4. **Query**: Your questions are semantically matched against stored code chunks
        """)
    
    return demo

if __name__ == "__main__":
    # Create and launch the interface
    demo = create_interface()
    
    # Launch with some nice settings
    demo.launch(
        server_name="0.0.0.0",  # Allow external access
        server_port=7860,       # Standard port
        share=False,            # Set to True to create public link
        debug=True              # Enable debug mode for development
    )