Spaces:
Sleeping
Sleeping
Commit
·
3c45764
1
Parent(s):
a0333da
Commiting all the super resolution files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .DS_Store +0 -0
- DEPLOYMENT_GUIDE.md +161 -0
- FUNCTION_MAPPING.md +142 -0
- README copy.md +235 -0
- SPACE_README.md +44 -0
- __pycache__/app.cpython-311.pyc +0 -0
- app.py +240 -0
- ldm/.DS_Store +0 -0
- ldm/__init__.py +2 -0
- ldm/__pycache__/__init__.cpython-311.pyc +0 -0
- ldm/__pycache__/__init__.cpython-312.pyc +0 -0
- ldm/__pycache__/util.cpython-311.pyc +0 -0
- ldm/__pycache__/util.cpython-312.pyc +0 -0
- ldm/__pycache__/util.cpython-38.pyc +0 -0
- ldm/models/__init__.py +2 -0
- ldm/models/__pycache__/__init__.cpython-311.pyc +0 -0
- ldm/models/__pycache__/__init__.cpython-312.pyc +0 -0
- ldm/models/__pycache__/autoencoder.cpython-311.pyc +0 -0
- ldm/models/__pycache__/autoencoder.cpython-312.pyc +0 -0
- ldm/models/__pycache__/autoencoder.cpython-38.pyc +0 -0
- ldm/models/autoencoder.py +145 -0
- ldm/modules/.DS_Store +0 -0
- ldm/modules/__init__.py +2 -0
- ldm/modules/__pycache__/__init__.cpython-311.pyc +0 -0
- ldm/modules/__pycache__/__init__.cpython-312.pyc +0 -0
- ldm/modules/__pycache__/attention.cpython-311.pyc +0 -0
- ldm/modules/__pycache__/attention.cpython-312.pyc +0 -0
- ldm/modules/__pycache__/ema.cpython-311.pyc +0 -0
- ldm/modules/__pycache__/ema.cpython-312.pyc +0 -0
- ldm/modules/__pycache__/ema.cpython-38.pyc +0 -0
- ldm/modules/attention.py +341 -0
- ldm/modules/diffusionmodules/__init__.py +0 -0
- ldm/modules/diffusionmodules/__pycache__/__init__.cpython-311.pyc +0 -0
- ldm/modules/diffusionmodules/__pycache__/__init__.cpython-312.pyc +0 -0
- ldm/modules/diffusionmodules/__pycache__/__init__.cpython-38.pyc +0 -0
- ldm/modules/diffusionmodules/__pycache__/model.cpython-311.pyc +0 -0
- ldm/modules/diffusionmodules/__pycache__/model.cpython-312.pyc +0 -0
- ldm/modules/diffusionmodules/__pycache__/model.cpython-38.pyc +0 -0
- ldm/modules/diffusionmodules/__pycache__/util.cpython-311.pyc +0 -0
- ldm/modules/diffusionmodules/__pycache__/util.cpython-312.pyc +0 -0
- ldm/modules/diffusionmodules/model.py +860 -0
- ldm/modules/diffusionmodules/model_back.py +815 -0
- ldm/modules/diffusionmodules/openaimodel.py +788 -0
- ldm/modules/diffusionmodules/upscaling.py +81 -0
- ldm/modules/diffusionmodules/util.py +270 -0
- ldm/modules/distributions/__init__.py +0 -0
- ldm/modules/distributions/__pycache__/__init__.cpython-311.pyc +0 -0
- ldm/modules/distributions/__pycache__/__init__.cpython-312.pyc +0 -0
- ldm/modules/distributions/__pycache__/__init__.cpython-38.pyc +0 -0
- ldm/modules/distributions/__pycache__/distributions.cpython-311.pyc +0 -0
.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
DEPLOYMENT_GUIDE.md
ADDED
|
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Hugging Face Space Deployment Guide
|
| 2 |
+
|
| 3 |
+
This guide will help you deploy your ResShift Super-Resolution model to Hugging Face Spaces.
|
| 4 |
+
|
| 5 |
+
## Prerequisites
|
| 6 |
+
|
| 7 |
+
1. Hugging Face account (sign up at https://huggingface.co)
|
| 8 |
+
2. Git installed on your machine
|
| 9 |
+
3. Your trained model checkpoint
|
| 10 |
+
|
| 11 |
+
## Step 1: Create a New Space
|
| 12 |
+
|
| 13 |
+
1. Go to https://huggingface.co/spaces
|
| 14 |
+
2. Click **"Create new Space"**
|
| 15 |
+
3. Fill in the details:
|
| 16 |
+
- **Space name**: e.g., `resshift-super-resolution`
|
| 17 |
+
- **SDK**: Select **"Gradio"**
|
| 18 |
+
- **Hardware**: Choose **"GPU"** (recommended for faster inference)
|
| 19 |
+
- **Visibility**: Public or Private
|
| 20 |
+
4. Click **"Create Space"**
|
| 21 |
+
|
| 22 |
+
## Step 2: Clone the Space Repository
|
| 23 |
+
|
| 24 |
+
After creating the space, Hugging Face will provide you with a Git URL. Clone it:
|
| 25 |
+
|
| 26 |
+
```bash
|
| 27 |
+
git clone https://huggingface.co/spaces/YOUR_USERNAME/YOUR_SPACE_NAME
|
| 28 |
+
cd YOUR_SPACE_NAME
|
| 29 |
+
```
|
| 30 |
+
|
| 31 |
+
## Step 3: Copy Required Files
|
| 32 |
+
|
| 33 |
+
Copy the following files from your project to the Space repository:
|
| 34 |
+
|
| 35 |
+
### Essential Files:
|
| 36 |
+
```bash
|
| 37 |
+
# From your DiffusionSR directory
|
| 38 |
+
cp app.py YOUR_SPACE_NAME/
|
| 39 |
+
cp requirements.txt YOUR_SPACE_NAME/
|
| 40 |
+
cp SPACE_README.md YOUR_SPACE_NAME/README.md
|
| 41 |
+
|
| 42 |
+
# Copy source code
|
| 43 |
+
cp -r src/ YOUR_SPACE_NAME/
|
| 44 |
+
|
| 45 |
+
# Copy model checkpoint
|
| 46 |
+
mkdir -p YOUR_SPACE_NAME/checkpoints/ckpts
|
| 47 |
+
cp checkpoints/ckpts/model_3200.pth YOUR_SPACE_NAME/checkpoints/ckpts/
|
| 48 |
+
|
| 49 |
+
# Copy VQGAN weights
|
| 50 |
+
mkdir -p YOUR_SPACE_NAME/pretrained_weights
|
| 51 |
+
cp pretrained_weights/autoencoder_vq_f4.pth YOUR_SPACE_NAME/pretrained_weights/
|
| 52 |
+
```
|
| 53 |
+
|
| 54 |
+
### Important Notes:
|
| 55 |
+
- **Model Size**: Checkpoints can be large (200-500MB). Hugging Face Spaces supports files up to 10GB.
|
| 56 |
+
- **Git LFS**: For large files, you may need Git LFS:
|
| 57 |
+
```bash
|
| 58 |
+
git lfs install
|
| 59 |
+
git lfs track "*.pth"
|
| 60 |
+
git add .gitattributes
|
| 61 |
+
```
|
| 62 |
+
|
| 63 |
+
## Step 4: Update app.py (if needed)
|
| 64 |
+
|
| 65 |
+
If your checkpoint path is different, update `app.py`:
|
| 66 |
+
|
| 67 |
+
```python
|
| 68 |
+
# In app.py, line ~25, update the checkpoint path:
|
| 69 |
+
checkpoint_path = "checkpoints/ckpts/model_3200.pth" # Change to your checkpoint name
|
| 70 |
+
```
|
| 71 |
+
|
| 72 |
+
## Step 5: Commit and Push
|
| 73 |
+
|
| 74 |
+
```bash
|
| 75 |
+
cd YOUR_SPACE_NAME
|
| 76 |
+
git add .
|
| 77 |
+
git commit -m "Initial commit: ResShift Super-Resolution app"
|
| 78 |
+
git push
|
| 79 |
+
```
|
| 80 |
+
|
| 81 |
+
## Step 6: Wait for Build
|
| 82 |
+
|
| 83 |
+
Hugging Face will automatically:
|
| 84 |
+
1. Install dependencies from `requirements.txt`
|
| 85 |
+
2. Run `app.py`
|
| 86 |
+
3. Make your app available at: `https://huggingface.co/spaces/YOUR_USERNAME/YOUR_SPACE_NAME`
|
| 87 |
+
|
| 88 |
+
The build process usually takes 5-10 minutes.
|
| 89 |
+
|
| 90 |
+
## Step 7: Test Your App
|
| 91 |
+
|
| 92 |
+
Once the build completes:
|
| 93 |
+
1. Visit your Space URL
|
| 94 |
+
2. Upload a test image
|
| 95 |
+
3. Verify the super-resolution works correctly
|
| 96 |
+
|
| 97 |
+
## Troubleshooting
|
| 98 |
+
|
| 99 |
+
### Build Fails
|
| 100 |
+
- Check the **Logs** tab in your Space for error messages
|
| 101 |
+
- Verify all dependencies are in `requirements.txt`
|
| 102 |
+
- Ensure file paths are correct
|
| 103 |
+
|
| 104 |
+
### Model Not Loading
|
| 105 |
+
- Check that checkpoint path in `app.py` matches your file structure
|
| 106 |
+
- Verify checkpoint file was uploaded correctly
|
| 107 |
+
- Check logs for specific error messages
|
| 108 |
+
|
| 109 |
+
### Out of Memory
|
| 110 |
+
- Reduce batch size in inference
|
| 111 |
+
- Use CPU instead of GPU (slower but uses less memory)
|
| 112 |
+
- Consider using a smaller model checkpoint
|
| 113 |
+
|
| 114 |
+
### Slow Inference
|
| 115 |
+
- Enable GPU in Space settings
|
| 116 |
+
- Reduce number of diffusion steps (modify `T` in config)
|
| 117 |
+
- Use AMP (automatic mixed precision)
|
| 118 |
+
|
| 119 |
+
## Alternative: Upload via Web Interface
|
| 120 |
+
|
| 121 |
+
If you prefer not to use Git:
|
| 122 |
+
|
| 123 |
+
1. Go to your Space page
|
| 124 |
+
2. Click **"Files and versions"** tab
|
| 125 |
+
3. Click **"Add file"** → **"Upload files"**
|
| 126 |
+
4. Upload all required files
|
| 127 |
+
5. The Space will rebuild automatically
|
| 128 |
+
|
| 129 |
+
## Updating Your Space
|
| 130 |
+
|
| 131 |
+
To update your Space with new changes:
|
| 132 |
+
|
| 133 |
+
```bash
|
| 134 |
+
cd YOUR_SPACE_NAME
|
| 135 |
+
# Make your changes
|
| 136 |
+
git add .
|
| 137 |
+
git commit -m "Update: description of changes"
|
| 138 |
+
git push
|
| 139 |
+
```
|
| 140 |
+
|
| 141 |
+
## Sharing Your Space
|
| 142 |
+
|
| 143 |
+
Once deployed, you can:
|
| 144 |
+
- Share the Space URL with others
|
| 145 |
+
- Embed it in websites using iframe
|
| 146 |
+
- Use it via API (if enabled)
|
| 147 |
+
|
| 148 |
+
## Next Steps
|
| 149 |
+
|
| 150 |
+
1. **Add Examples**: Add example images to showcase your model
|
| 151 |
+
2. **Improve UI**: Customize the Gradio interface
|
| 152 |
+
3. **Add Documentation**: Update README with more details
|
| 153 |
+
4. **Monitor Usage**: Check Space metrics to see usage
|
| 154 |
+
|
| 155 |
+
## Support
|
| 156 |
+
|
| 157 |
+
If you encounter issues:
|
| 158 |
+
- Check Hugging Face Spaces documentation: https://huggingface.co/docs/hub/spaces
|
| 159 |
+
- Review Space logs for error messages
|
| 160 |
+
- Ask for help in Hugging Face forums
|
| 161 |
+
|
FUNCTION_MAPPING.md
ADDED
|
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Function Mapping: Original Implementation → Our Implementation
|
| 2 |
+
|
| 3 |
+
This document maps functions from the original ResShift implementation to our corresponding functions and explains what each function does.
|
| 4 |
+
|
| 5 |
+
## Core Diffusion Functions
|
| 6 |
+
|
| 7 |
+
### Forward Process (Noise Addition)
|
| 8 |
+
|
| 9 |
+
| Original Function | Our Implementation | Description |
|
| 10 |
+
|------------------|-------------------|-------------|
|
| 11 |
+
| `GaussianDiffusion.q_sample(x_start, y, t, noise=None)` | `trainer.py: training_step()` (line 434) | **Forward diffusion process**: Adds noise to HR image according to ResShift schedule. Formula: `x_t = x_0 + η_t * (y - x_0) + κ * √η_t * ε` |
|
| 12 |
+
| `GaussianDiffusion.q_mean_variance(x_start, y, t)` | Not directly used | Computes mean and variance of forward process `q(x_t | x_0, y)` |
|
| 13 |
+
| `GaussianDiffusion.q_posterior_mean_variance(x_start, x_t, t)` | `trainer.py: validation()` (line 845) | Computes posterior mean and variance `q(x_{t-1} | x_t, x_0)` for backward sampling. Used in equation (7) |
|
| 14 |
+
|
| 15 |
+
### Backward Process (Sampling)
|
| 16 |
+
|
| 17 |
+
| Original Function | Our Implementation | Description |
|
| 18 |
+
|------------------|-------------------|-------------|
|
| 19 |
+
| `GaussianDiffusion.p_mean_variance(model, x_t, y, t, ...)` | `trainer.py: validation()` (lines 844-848)<br>`inference.py: inference_single_image()` (lines 251-255)<br>`app.py: super_resolve()` (lines 154-158) | **Computes backward step parameters**: Calculates mean `μ_θ` and variance `Σ_θ` for equation (7). Mean: `μ_θ = (η_{t-1}/η_t) * x_t + (α_t/η_t) * f_θ(x_t, y_0, t)`<br>Variance: `Σ_θ = κ² * (η_{t-1}/η_t) * α_t` |
|
| 20 |
+
| `GaussianDiffusion.p_sample(model, x, y, t, ...)` | `trainer.py: validation()` (lines 850-853)<br>`inference.py: inference_single_image()` (lines 257-260)<br>`app.py: super_resolve()` (lines 160-163) | **Single backward sampling step**: Samples `x_{t-1}` from `p(x_{t-1} | x_t, y)` using equation (7). Formula: `x_{t-1} = μ_θ + √Σ_θ * ε` (with nonzero_mask for t > 0) |
|
| 21 |
+
| `GaussianDiffusion.p_sample_loop(y, model, ...)` | `trainer.py: validation()` (lines 822-856)<br>`inference.py: inference_single_image()` (lines 229-263)<br>`app.py: super_resolve()` (lines 133-165) | **Full sampling loop**: Iterates from t = T-1 down to t = 0, calling `p_sample` at each step. Returns final denoised sample |
|
| 22 |
+
| `GaussianDiffusion.p_sample_loop_progressive(y, model, ...)` | Same as above (we don't use progressive) | Same as `p_sample_loop` but yields intermediate samples at each timestep |
|
| 23 |
+
| `GaussianDiffusion.prior_sample(y, noise=None)` | `trainer.py: validation()` (lines 813-815)<br>`inference.py: inference_single_image()` (lines 223-226)<br>`app.py: super_resolve()` (lines 128-130) | **Initializes x_T for sampling**: Generates starting point from prior distribution. Formula: `x_T = y + κ * √η_T * noise` (starts from LR + noise) |
|
| 24 |
+
|
| 25 |
+
### Input Scaling
|
| 26 |
+
|
| 27 |
+
| Original Function | Our Implementation | Description |
|
| 28 |
+
|------------------|-------------------|-------------|
|
| 29 |
+
| `GaussianDiffusion._scale_input(inputs, t)` | `trainer.py: _scale_input()` (lines 367-389)<br>`inference.py: _scale_input()` (lines 151-173)<br>`app.py: _scale_input()` (lines 50-72) | **Normalizes input variance**: Scales input `x_t` to normalize variance across timesteps for training stability. Formula: `x_scaled = x_t / std` where `std = √(η_t * κ² + 1)` for latent space |
|
| 30 |
+
|
| 31 |
+
### Training Loss
|
| 32 |
+
|
| 33 |
+
| Original Function | Our Implementation | Description |
|
| 34 |
+
|------------------|-------------------|-------------|
|
| 35 |
+
| `GaussianDiffusion.training_losses(model, x_start, y, t, ...)` | `trainer.py: training_step()` (lines 392-493) | **Computes training loss**: Encodes HR/LR to latent, adds noise via `q_sample`, predicts x0, computes MSE loss. Our implementation: predicts x0 directly (ModelMeanType.START_X) |
|
| 36 |
+
|
| 37 |
+
### Autoencoder Functions
|
| 38 |
+
|
| 39 |
+
| Original Function | Our Implementation | Description |
|
| 40 |
+
|------------------|-------------------|-------------|
|
| 41 |
+
| `GaussianDiffusion.encode_first_stage(y, first_stage_model, up_sample=False)` | `autoencoder.py: VQGANWrapper.encode()`<br>`data.py: SRDatasetOnTheFly.__getitem__()` (line 160) | **Encodes image to latent**: Encodes pixel-space image to latent space using VQGAN. If `up_sample=True`, upsamples LR before encoding |
|
| 42 |
+
| `GaussianDiffusion.decode_first_stage(z_sample, first_stage_model, ...)` | `autoencoder.py: VQGANWrapper.decode()`<br>`trainer.py: validation()` (line 861)<br>`inference.py: inference_single_image()` (line 269) | **Decodes latent to image**: Decodes latent-space tensor back to pixel space using VQGAN decoder |
|
| 43 |
+
|
| 44 |
+
## Trainer Functions
|
| 45 |
+
|
| 46 |
+
### Original Trainer (`original_trainer.py`)
|
| 47 |
+
|
| 48 |
+
| Original Function | Our Implementation | Description |
|
| 49 |
+
|------------------|-------------------|-------------|
|
| 50 |
+
| `Trainer.__init__(configs, ...)` | `trainer.py: Trainer.__init__()` (lines 36-75) | **Initializes trainer**: Sets up device, checkpoint directory, noise schedule, loss function, WandB |
|
| 51 |
+
| `Trainer.setup_seed(seed=None)` | `trainer.py: setup_seed()` (lines 76-95) | **Sets random seeds**: Ensures reproducibility by setting seeds for random, numpy, torch, and CUDA |
|
| 52 |
+
| `Trainer.build_model()` | `trainer.py: build_model()` (lines 212-267) | **Builds model and autoencoder**: Initializes FullUNET model, optionally compiles it, loads VQGAN autoencoder, initializes LPIPS metric |
|
| 53 |
+
| `Trainer.setup_optimization()` | `trainer.py: setup_optimization()` (lines 141-211) | **Sets up optimizer and scheduler**: Initializes AdamW optimizer, AMP scaler (if enabled), CosineAnnealingLR scheduler (if enabled) |
|
| 54 |
+
| `Trainer.build_dataloader()` | `trainer.py: build_dataloader()` (lines 283-344) | **Builds data loaders**: Creates train and validation DataLoaders, wraps train loader to cycle infinitely |
|
| 55 |
+
| `Trainer.training_losses()` | `trainer.py: training_step()` (lines 392-493) | **Training step**: Implements micro-batching, adds noise, forward pass, loss computation, backward step, gradient clipping, optimizer step |
|
| 56 |
+
| `Trainer.validation(phase='val')` | `trainer.py: validation()` (lines 748-963) | **Validation loop**: Runs full diffusion sampling loop, decodes results, computes PSNR/SSIM/LPIPS metrics, logs to WandB |
|
| 57 |
+
| `Trainer.adjust_lr(current_iters=None)` | `trainer.py: adjust_lr()` (lines 495-519) | **Learning rate scheduling**: Implements linear warmup, then cosine annealing (if enabled) |
|
| 58 |
+
| `Trainer.save_ckpt()` | `trainer.py: save_ckpt()` (lines 520-562) | **Saves checkpoint**: Saves model, optimizer, AMP scaler, LR scheduler states, current iteration |
|
| 59 |
+
| `Trainer.resume_from_ckpt(ckpt_path)` | `trainer.py: resume_from_ckpt()` (lines 563-670) | **Resumes from checkpoint**: Loads model, optimizer, scaler, scheduler states, restores iteration count and LR schedule |
|
| 60 |
+
| `Trainer.log_step_train(...)` | `trainer.py: log_step_train()` (lines 671-747) | **Logs training metrics**: Logs loss, learning rate, images (HR, LR, noisy input, prediction) to WandB at specified frequencies |
|
| 61 |
+
| `Trainer.reload_ema_model()` | `trainer.py: validation()` (line 754) | **Loads EMA model**: Uses EMA model for validation if `use_ema_val=True` |
|
| 62 |
+
|
| 63 |
+
## Inference Functions
|
| 64 |
+
|
| 65 |
+
### Original Sampler (`original_sampler.py`)
|
| 66 |
+
|
| 67 |
+
| Original Function | Our Implementation | Description |
|
| 68 |
+
|------------------|-------------------|-------------|
|
| 69 |
+
| `ResShiftSampler.sample_func(y0, noise_repeat=False, mask=False)` | `inference.py: inference_single_image()` (lines 175-274)<br>`app.py: super_resolve()` (lines 93-165) | **Single image inference**: Encodes LR to latent, runs full diffusion sampling loop, decodes to pixel space |
|
| 70 |
+
| `ResShiftSampler.inference(in_path, out_path, ...)` | `inference.py: main()` (lines 385-509) | **Batch inference**: Processes single image or directory of images, handles chopping for large images |
|
| 71 |
+
| `ResShiftSampler.build_model()` | `inference.py: load_model()` (lines 322-384) | **Loads model and autoencoder**: Loads checkpoint, handles compiled model checkpoints (strips `_orig_mod.` prefix), loads EMA if specified |
|
| 72 |
+
|
| 73 |
+
## Key Differences and Notes
|
| 74 |
+
|
| 75 |
+
### 1. **Model Prediction Type**
|
| 76 |
+
- **Original**: Supports multiple prediction types (START_X, EPSILON, RESIDUAL, EPSILON_SCALE)
|
| 77 |
+
- **Our Implementation**: Only uses START_X (predicts x0 directly), matching ResShift paper
|
| 78 |
+
|
| 79 |
+
### 2. **Sampling Initialization**
|
| 80 |
+
- **Original**: Uses `prior_sample(y, noise)` → `x_T = y + κ * √η_T * noise` (starts from LR + noise)
|
| 81 |
+
- **Our Implementation**: Same approach in inference and validation (fixed in validation to match original)
|
| 82 |
+
|
| 83 |
+
### 3. **Backward Equation (Equation 7)**
|
| 84 |
+
- **Original**: Uses `p_mean_variance()` → computes `μ_θ = (η_{t-1}/η_t) * x_t + (α_t/η_t) * x0_pred` and `Σ_θ = κ² * (η_{t-1}/η_t) * α_t`
|
| 85 |
+
- **Our Implementation**: Same equation, implemented directly in sampling loops
|
| 86 |
+
|
| 87 |
+
### 4. **Input Scaling**
|
| 88 |
+
- **Original**: `_scale_input()` normalizes variance: `x_scaled = x_t / √(η_t * κ² + 1)` for latent space
|
| 89 |
+
- **Our Implementation**: Same formula, applied in training and inference
|
| 90 |
+
|
| 91 |
+
### 5. **Training Loss**
|
| 92 |
+
- **Original**: Supports weighted MSE based on posterior variance
|
| 93 |
+
- **Our Implementation**: Uses simple MSE loss (predicts x0, compares with HR latent)
|
| 94 |
+
|
| 95 |
+
### 6. **Validation**
|
| 96 |
+
- **Original**: Uses `p_sample_loop_progressive()` with EMA model, computes PSNR/LPIPS
|
| 97 |
+
- **Our Implementation**: Same approach, also computes SSIM, uses EMA if `use_ema_val=True`
|
| 98 |
+
|
| 99 |
+
### 7. **Checkpoint Handling**
|
| 100 |
+
- **Original**: Standard checkpoint loading
|
| 101 |
+
- **Our Implementation**: Handles compiled model checkpoints (strips `_orig_mod.` prefix) for `torch.compile()` compatibility
|
| 102 |
+
|
| 103 |
+
## Function Call Flow
|
| 104 |
+
|
| 105 |
+
### Training Flow
|
| 106 |
+
```
|
| 107 |
+
train.py: train()
|
| 108 |
+
→ Trainer.__init__()
|
| 109 |
+
→ Trainer.build_model()
|
| 110 |
+
→ Trainer.setup_optimization()
|
| 111 |
+
→ Trainer.build_dataloader()
|
| 112 |
+
→ Loop:
|
| 113 |
+
→ Trainer.training_step() # q_sample + forward + loss + backward
|
| 114 |
+
→ Trainer.adjust_lr()
|
| 115 |
+
→ Trainer.validation() # p_sample_loop
|
| 116 |
+
→ Trainer.log_step_train()
|
| 117 |
+
→ Trainer.save_ckpt()
|
| 118 |
+
```
|
| 119 |
+
|
| 120 |
+
### Inference Flow
|
| 121 |
+
```
|
| 122 |
+
inference.py: main()
|
| 123 |
+
→ load_model() # Load checkpoint
|
| 124 |
+
→ get_vqgan() # Load autoencoder
|
| 125 |
+
→ inference_single_image()
|
| 126 |
+
→ autoencoder.encode() # LR → latent
|
| 127 |
+
→ prior_sample() # Initialize x_T
|
| 128 |
+
→ Loop: p_sample() # Denoise T-1 → 0
|
| 129 |
+
→ autoencoder.decode() # Latent → pixel
|
| 130 |
+
```
|
| 131 |
+
|
| 132 |
+
## Summary
|
| 133 |
+
|
| 134 |
+
Our implementation closely follows the original ResShift implementation, with the following key mappings:
|
| 135 |
+
- **Forward process**: `q_sample` → `training_step()` noise addition
|
| 136 |
+
- **Backward process**: `p_sample` → sampling loops in `validation()` and `inference_single_image()`
|
| 137 |
+
- **Training**: `training_losses` → `training_step()`
|
| 138 |
+
- **Autoencoder**: `encode_first_stage`/`decode_first_stage` → `VQGANWrapper.encode()`/`decode()`
|
| 139 |
+
- **Input scaling**: `_scale_input` → `_scale_input()` (same name, same logic)
|
| 140 |
+
|
| 141 |
+
All core diffusion equations (forward process, backward equation 7, input scaling) match the original implementation.
|
| 142 |
+
|
README copy.md
ADDED
|
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# DiffusionSR
|
| 2 |
+
|
| 3 |
+
A **from-scratch implementation** of the [ResShift](https://arxiv.org/abs/2307.12348) paper: an efficient diffusion-based super-resolution model that uses a U-Net architecture with Swin Transformer blocks to enhance low-resolution images. This implementation combines the power of diffusion models with transformer-based attention mechanisms for high-quality image super-resolution.
|
| 4 |
+
|
| 5 |
+
## Overview
|
| 6 |
+
|
| 7 |
+
This project is a complete from-scratch implementation of ResShift, a diffusion model for single image super-resolution (SISR) that efficiently reduces the number of diffusion steps required by shifting the residual between high-resolution and low-resolution images. The model architecture consists of:
|
| 8 |
+
|
| 9 |
+
- **Encoder**: 4-stage encoder with residual blocks and time embeddings
|
| 10 |
+
- **Bottleneck**: Swin Transformer blocks for global feature modeling
|
| 11 |
+
- **Decoder**: 4-stage decoder with skip connections from the encoder
|
| 12 |
+
- **Noise Schedule**: ResShift schedule (15 timesteps) for the diffusion process
|
| 13 |
+
|
| 14 |
+
## Features
|
| 15 |
+
|
| 16 |
+
- **ResShift Implementation**: Complete from-scratch implementation of the ResShift paper
|
| 17 |
+
- **Efficient Diffusion**: Residual shifting mechanism reduces required diffusion steps
|
| 18 |
+
- **U-Net Architecture**: Encoder-decoder structure with skip connections
|
| 19 |
+
- **Swin Transformer**: Window-based attention mechanism in the bottleneck
|
| 20 |
+
- **Time Conditioning**: Sinusoidal time embeddings for diffusion timesteps
|
| 21 |
+
- **DIV2K Dataset**: Trained on DIV2K high-quality image dataset
|
| 22 |
+
- **Comprehensive Evaluation**: Metrics include PSNR, SSIM, and LPIPS
|
| 23 |
+
|
| 24 |
+
## Requirements
|
| 25 |
+
|
| 26 |
+
- Python >= 3.11
|
| 27 |
+
- PyTorch >= 2.9.1
|
| 28 |
+
- [uv](https://github.com/astral-sh/uv) (Python package manager)
|
| 29 |
+
|
| 30 |
+
## Installation
|
| 31 |
+
|
| 32 |
+
### 1. Clone the Repository
|
| 33 |
+
|
| 34 |
+
```bash
|
| 35 |
+
git clone <repository-url>
|
| 36 |
+
cd DiffusionSR
|
| 37 |
+
```
|
| 38 |
+
|
| 39 |
+
### 2. Install uv (if not already installed)
|
| 40 |
+
|
| 41 |
+
```bash
|
| 42 |
+
# On macOS and Linux
|
| 43 |
+
curl -LsSf https://astral.sh/uv/install.sh | sh
|
| 44 |
+
|
| 45 |
+
# Or using pip
|
| 46 |
+
pip install uv
|
| 47 |
+
```
|
| 48 |
+
|
| 49 |
+
### 3. Create Virtual Environment and Install Dependencies
|
| 50 |
+
|
| 51 |
+
```bash
|
| 52 |
+
# Create virtual environment and install dependencies
|
| 53 |
+
uv venv
|
| 54 |
+
|
| 55 |
+
# Activate the virtual environment
|
| 56 |
+
# On macOS/Linux:
|
| 57 |
+
source .venv/bin/activate
|
| 58 |
+
|
| 59 |
+
# On Windows:
|
| 60 |
+
# .venv\Scripts\activate
|
| 61 |
+
|
| 62 |
+
# Install project dependencies
|
| 63 |
+
uv pip install -e .
|
| 64 |
+
```
|
| 65 |
+
|
| 66 |
+
Alternatively, you can use uv's sync command:
|
| 67 |
+
|
| 68 |
+
```bash
|
| 69 |
+
uv sync
|
| 70 |
+
```
|
| 71 |
+
|
| 72 |
+
## Dataset Setup
|
| 73 |
+
|
| 74 |
+
The model expects the DIV2K dataset in the following structure:
|
| 75 |
+
|
| 76 |
+
```
|
| 77 |
+
data/
|
| 78 |
+
├── DIV2K_train_HR/ # High-resolution training images
|
| 79 |
+
└── DIV2K_train_LR_bicubic/
|
| 80 |
+
└── X4/ # Low-resolution images (4x downsampled)
|
| 81 |
+
```
|
| 82 |
+
|
| 83 |
+
### Download DIV2K Dataset
|
| 84 |
+
|
| 85 |
+
1. Download the DIV2K dataset from the [official website](https://data.vision.ee.ethz.ch/cvl/DIV2K/)
|
| 86 |
+
2. Extract the files to the `data/` directory
|
| 87 |
+
3. Ensure the directory structure matches the above
|
| 88 |
+
|
| 89 |
+
**Note**: Update the paths in `src/data.py` (lines 75-76) to match your dataset location:
|
| 90 |
+
|
| 91 |
+
```python
|
| 92 |
+
train_dataset = SRDataset(
|
| 93 |
+
dir_HR = 'path/to/DIV2K_train_HR',
|
| 94 |
+
dir_LR = 'path/to/DIV2K_train_LR_bicubic/X4',
|
| 95 |
+
scale=4,
|
| 96 |
+
patch_size=256
|
| 97 |
+
)
|
| 98 |
+
```
|
| 99 |
+
|
| 100 |
+
## Usage
|
| 101 |
+
|
| 102 |
+
### Training
|
| 103 |
+
|
| 104 |
+
To train the model, run:
|
| 105 |
+
|
| 106 |
+
```bash
|
| 107 |
+
python src/train.py
|
| 108 |
+
```
|
| 109 |
+
|
| 110 |
+
The training script will:
|
| 111 |
+
- Load the dataset using the `SRDataset` class
|
| 112 |
+
- Initialize the `FullUNET` model
|
| 113 |
+
- Train using the ResShift noise schedule
|
| 114 |
+
- Save training progress and loss values
|
| 115 |
+
|
| 116 |
+
### Training Configuration
|
| 117 |
+
|
| 118 |
+
Current training parameters (in `src/train.py`):
|
| 119 |
+
- **Batch size**: 4
|
| 120 |
+
- **Learning rate**: 1e-4
|
| 121 |
+
- **Optimizer**: Adam (betas: 0.9, 0.999)
|
| 122 |
+
- **Loss function**: MSE Loss
|
| 123 |
+
- **Gradient clipping**: 1.0
|
| 124 |
+
- **Training steps**: 150
|
| 125 |
+
- **Scale factor**: 4x
|
| 126 |
+
- **Patch size**: 256x256
|
| 127 |
+
|
| 128 |
+
You can modify these parameters directly in `src/train.py` to suit your needs.
|
| 129 |
+
|
| 130 |
+
### Evaluation
|
| 131 |
+
|
| 132 |
+
The model performance is evaluated using the following metrics:
|
| 133 |
+
|
| 134 |
+
- **PSNR (Peak Signal-to-Noise Ratio)**: Measures the ratio between the maximum possible power of a signal and the power of corrupting noise. Higher PSNR values indicate better image quality reconstruction.
|
| 135 |
+
|
| 136 |
+
- **SSIM (Structural Similarity Index Measure)**: Assesses the similarity between two images based on luminance, contrast, and structure. SSIM values range from -1 to 1, with higher values (closer to 1) indicating greater similarity to the ground truth.
|
| 137 |
+
|
| 138 |
+
- **LPIPS (Learned Perceptual Image Patch Similarity)**: Evaluates perceptual similarity between images using deep network features. Lower LPIPS values indicate images that are more perceptually similar to the reference image.
|
| 139 |
+
|
| 140 |
+
To run evaluation (once implemented), use:
|
| 141 |
+
|
| 142 |
+
```bash
|
| 143 |
+
python src/test.py
|
| 144 |
+
```
|
| 145 |
+
|
| 146 |
+
## Project Structure
|
| 147 |
+
|
| 148 |
+
```
|
| 149 |
+
DiffusionSR/
|
| 150 |
+
├── data/ # Dataset directory (not tracked in git)
|
| 151 |
+
│ ├── DIV2K_train_HR/
|
| 152 |
+
│ └── DIV2K_train_LR_bicubic/
|
| 153 |
+
├── src/
|
| 154 |
+
│ ├── config.py # Configuration file
|
| 155 |
+
│ ├── data.py # Dataset class and data loading
|
| 156 |
+
│ ├── model.py # U-Net model architecture
|
| 157 |
+
│ ├── noiseControl.py # ResShift noise schedule
|
| 158 |
+
│ ├── train.py # Training script
|
| 159 |
+
│ └── test.py # Testing script (to be implemented)
|
| 160 |
+
├── pyproject.toml # Project dependencies and metadata
|
| 161 |
+
├── uv.lock # Locked dependency versions
|
| 162 |
+
└── README.md # This file
|
| 163 |
+
```
|
| 164 |
+
|
| 165 |
+
## Model Architecture
|
| 166 |
+
|
| 167 |
+
### Encoder
|
| 168 |
+
- **Initial Conv**: 3 → 64 channels
|
| 169 |
+
- **Stage 1**: 64 → 128 channels, 256×256 → 128×128
|
| 170 |
+
- **Stage 2**: 128 → 256 channels, 128×128 → 64×64
|
| 171 |
+
- **Stage 3**: 256 → 512 channels, 64×64 → 32×32
|
| 172 |
+
- **Stage 4**: 512 channels (no downsampling)
|
| 173 |
+
|
| 174 |
+
### Bottleneck
|
| 175 |
+
- Residual blocks with Swin Transformer blocks
|
| 176 |
+
- Window size: 7×7
|
| 177 |
+
- Shifted window attention for global context
|
| 178 |
+
|
| 179 |
+
### Decoder
|
| 180 |
+
- **Stage 1**: 512 → 256 channels, 32×32 → 64×64
|
| 181 |
+
- **Stage 2**: 256 → 128 channels, 64×64 → 128×128
|
| 182 |
+
- **Stage 3**: 128 → 64 channels, 128×128 → 256×256
|
| 183 |
+
- **Stage 4**: 64 → 64 channels
|
| 184 |
+
- **Final Conv**: 64 → 3 channels (RGB output)
|
| 185 |
+
|
| 186 |
+
## Key Components
|
| 187 |
+
|
| 188 |
+
### ResShift Noise Schedule
|
| 189 |
+
The model implements the ResShift noise schedule as described in the original paper, defined in `src/noiseControl.py`:
|
| 190 |
+
- 15 timesteps (0-14)
|
| 191 |
+
- Parameters: `eta1=0.001`, `etaT=0.999`, `p=0.8`
|
| 192 |
+
- Efficiently shifts the residual between HR and LR images during the diffusion process
|
| 193 |
+
|
| 194 |
+
### Time Embeddings
|
| 195 |
+
Sinusoidal embeddings are used to condition the model on diffusion timesteps, similar to positional encodings in transformers.
|
| 196 |
+
|
| 197 |
+
### Data Augmentation
|
| 198 |
+
The dataset includes:
|
| 199 |
+
- Random cropping (aligned between HR and LR)
|
| 200 |
+
- Random horizontal/vertical flips
|
| 201 |
+
- Random 180° rotation
|
| 202 |
+
|
| 203 |
+
## Development
|
| 204 |
+
|
| 205 |
+
### Adding New Features
|
| 206 |
+
|
| 207 |
+
1. Model modifications: Edit `src/model.py`
|
| 208 |
+
2. Training changes: Modify `src/train.py`
|
| 209 |
+
3. Data pipeline: Update `src/data.py`
|
| 210 |
+
4. Configuration: Add settings to `src/config.py`
|
| 211 |
+
|
| 212 |
+
## License
|
| 213 |
+
|
| 214 |
+
[Add your license here]
|
| 215 |
+
|
| 216 |
+
## Citation
|
| 217 |
+
|
| 218 |
+
If you use this code in your research, please cite the original ResShift paper:
|
| 219 |
+
|
| 220 |
+
```bibtex
|
| 221 |
+
@article{yue2023resshift,
|
| 222 |
+
title={ResShift: Efficient Diffusion Model for Image Super-resolution by Residual Shifting},
|
| 223 |
+
author={Yue, Zongsheng and Wang, Jianyi and Loy, Chen Change},
|
| 224 |
+
journal={arXiv preprint arXiv:2307.12348},
|
| 225 |
+
year={2023}
|
| 226 |
+
}
|
| 227 |
+
```
|
| 228 |
+
|
| 229 |
+
## Acknowledgments
|
| 230 |
+
|
| 231 |
+
- **ResShift Authors**: Zongsheng Yue, Jianyi Wang, and Chen Change Loy for their foundational work on efficient diffusion-based super-resolution
|
| 232 |
+
- DIV2K dataset providers
|
| 233 |
+
- PyTorch community
|
| 234 |
+
- Swin Transformer architecture inspiration
|
| 235 |
+
|
SPACE_README.md
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: ResShift Super-Resolution
|
| 3 |
+
emoji: 🖼️
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: purple
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 4.0.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# ResShift Super-Resolution
|
| 14 |
+
|
| 15 |
+
Super-resolution using ResShift diffusion model. Upload a low-resolution image to get an enhanced, super-resolved version.
|
| 16 |
+
|
| 17 |
+
## Features
|
| 18 |
+
|
| 19 |
+
- 4x super-resolution using diffusion model
|
| 20 |
+
- Works in latent space for efficient processing
|
| 21 |
+
- Full diffusion sampling loop (15 steps)
|
| 22 |
+
- Real-time inference with Gradio interface
|
| 23 |
+
|
| 24 |
+
## Usage
|
| 25 |
+
|
| 26 |
+
1. Upload a low-resolution image
|
| 27 |
+
2. Click "Super-Resolve" or wait for automatic processing
|
| 28 |
+
3. Download the super-resolved output
|
| 29 |
+
|
| 30 |
+
## Model
|
| 31 |
+
|
| 32 |
+
The model is trained on DIV2K dataset and uses VQGAN for latent space encoding/decoding.
|
| 33 |
+
|
| 34 |
+
## Technical Details
|
| 35 |
+
|
| 36 |
+
- **Architecture**: U-Net with Swin Transformer blocks
|
| 37 |
+
- **Latent Space**: 64x64 (encoded from 256x256 pixel space)
|
| 38 |
+
- **Diffusion Steps**: 15 timesteps
|
| 39 |
+
- **Scale Factor**: 4x
|
| 40 |
+
|
| 41 |
+
## Citation
|
| 42 |
+
|
| 43 |
+
If you use this model, please cite the ResShift paper.
|
| 44 |
+
|
__pycache__/app.cpython-311.pyc
ADDED
|
Binary file (9.6 kB). View file
|
|
|
app.py
ADDED
|
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Gradio app for ResShift Super-Resolution
|
| 3 |
+
Hosted on Hugging Face Spaces
|
| 4 |
+
"""
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import torch
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import torchvision.transforms.functional as TF
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
import sys
|
| 11 |
+
|
| 12 |
+
# Add src to path
|
| 13 |
+
sys.path.insert(0, str(Path(__file__).parent / "src"))
|
| 14 |
+
|
| 15 |
+
from model import FullUNET
|
| 16 |
+
from autoencoder import get_vqgan
|
| 17 |
+
from noiseControl import resshift_schedule
|
| 18 |
+
from config import device, T, k, normalize_input, latent_flag, gt_size
|
| 19 |
+
|
| 20 |
+
# Global variables for loaded models
|
| 21 |
+
model = None
|
| 22 |
+
autoencoder = None
|
| 23 |
+
eta_schedule = None
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def load_models():
|
| 27 |
+
"""Load models on startup."""
|
| 28 |
+
global model, autoencoder, eta_schedule
|
| 29 |
+
|
| 30 |
+
print("Loading models...")
|
| 31 |
+
|
| 32 |
+
# Load model checkpoint
|
| 33 |
+
checkpoint_path = "checkpoints/ckpts/model_3200.pth" # Update with your checkpoint path
|
| 34 |
+
if not Path(checkpoint_path).exists():
|
| 35 |
+
# Try to find any checkpoint
|
| 36 |
+
ckpt_dir = Path("checkpoints/ckpts")
|
| 37 |
+
if ckpt_dir.exists():
|
| 38 |
+
checkpoints = list(ckpt_dir.glob("model_*.pth"))
|
| 39 |
+
if checkpoints:
|
| 40 |
+
checkpoint_path = str(checkpoints[-1]) # Use latest
|
| 41 |
+
print(f"Using checkpoint: {checkpoint_path}")
|
| 42 |
+
else:
|
| 43 |
+
raise FileNotFoundError("No model checkpoint found!")
|
| 44 |
+
else:
|
| 45 |
+
raise FileNotFoundError(f"Checkpoint not found: {checkpoint_path}")
|
| 46 |
+
|
| 47 |
+
model = FullUNET()
|
| 48 |
+
model = model.to(device)
|
| 49 |
+
|
| 50 |
+
ckpt = torch.load(checkpoint_path, map_location=device)
|
| 51 |
+
if 'state_dict' in ckpt:
|
| 52 |
+
state_dict = ckpt['state_dict']
|
| 53 |
+
else:
|
| 54 |
+
state_dict = ckpt
|
| 55 |
+
|
| 56 |
+
# Handle compiled model checkpoints
|
| 57 |
+
if any(key.startswith('_orig_mod.') for key in state_dict.keys()):
|
| 58 |
+
new_state_dict = {}
|
| 59 |
+
for key, val in state_dict.items():
|
| 60 |
+
if key.startswith('_orig_mod.'):
|
| 61 |
+
new_state_dict[key[10:]] = val
|
| 62 |
+
else:
|
| 63 |
+
new_state_dict[key] = val
|
| 64 |
+
state_dict = new_state_dict
|
| 65 |
+
|
| 66 |
+
model.load_state_dict(state_dict)
|
| 67 |
+
model.eval()
|
| 68 |
+
print("✓ Model loaded")
|
| 69 |
+
|
| 70 |
+
# Load VQGAN autoencoder
|
| 71 |
+
autoencoder = get_vqgan()
|
| 72 |
+
print("✓ VQGAN autoencoder loaded")
|
| 73 |
+
|
| 74 |
+
# Initialize noise schedule
|
| 75 |
+
eta_schedule = resshift_schedule().to(device)
|
| 76 |
+
eta_schedule = eta_schedule[:, None, None, None]
|
| 77 |
+
print("✓ Noise schedule initialized")
|
| 78 |
+
|
| 79 |
+
return "Models loaded successfully!"
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def _scale_input(x_t, t, eta_schedule, k, normalize_input, latent_flag):
|
| 83 |
+
"""Scale input based on timestep."""
|
| 84 |
+
if normalize_input and latent_flag:
|
| 85 |
+
eta_t = eta_schedule[t]
|
| 86 |
+
std = torch.sqrt(eta_t * k**2 + 1)
|
| 87 |
+
x_t_scaled = x_t / std
|
| 88 |
+
else:
|
| 89 |
+
x_t_scaled = x_t
|
| 90 |
+
return x_t_scaled
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def super_resolve(input_image):
|
| 94 |
+
"""
|
| 95 |
+
Perform super-resolution on input image.
|
| 96 |
+
|
| 97 |
+
Args:
|
| 98 |
+
input_image: PIL Image or numpy array
|
| 99 |
+
|
| 100 |
+
Returns:
|
| 101 |
+
PIL Image of super-resolved output
|
| 102 |
+
"""
|
| 103 |
+
if input_image is None:
|
| 104 |
+
return None
|
| 105 |
+
|
| 106 |
+
if model is None or autoencoder is None:
|
| 107 |
+
return None
|
| 108 |
+
|
| 109 |
+
try:
|
| 110 |
+
# Convert to PIL Image if needed
|
| 111 |
+
if isinstance(input_image, Image.Image):
|
| 112 |
+
img = input_image
|
| 113 |
+
else:
|
| 114 |
+
img = Image.fromarray(input_image)
|
| 115 |
+
|
| 116 |
+
# Resize to target size (256x256)
|
| 117 |
+
img = img.resize((gt_size, gt_size), Image.BICUBIC)
|
| 118 |
+
|
| 119 |
+
# Convert to tensor
|
| 120 |
+
img_tensor = TF.to_tensor(img).unsqueeze(0).to(device) # (1, 3, 256, 256)
|
| 121 |
+
|
| 122 |
+
# Run inference
|
| 123 |
+
with torch.no_grad():
|
| 124 |
+
# Encode to latent space
|
| 125 |
+
lr_latent = autoencoder.encode(img_tensor) # (1, 3, 64, 64)
|
| 126 |
+
|
| 127 |
+
# Initialize x_t at maximum timestep
|
| 128 |
+
epsilon_init = torch.randn_like(lr_latent)
|
| 129 |
+
eta_max = eta_schedule[T - 1]
|
| 130 |
+
x_t = lr_latent + k * torch.sqrt(eta_max) * epsilon_init
|
| 131 |
+
|
| 132 |
+
# Full diffusion sampling loop
|
| 133 |
+
for t_step in range(T - 1, -1, -1):
|
| 134 |
+
t = torch.full((lr_latent.shape[0],), t_step, device=device, dtype=torch.long)
|
| 135 |
+
|
| 136 |
+
# Scale input
|
| 137 |
+
x_t_scaled = _scale_input(x_t, t, eta_schedule, k, normalize_input, latent_flag)
|
| 138 |
+
|
| 139 |
+
# Predict x0
|
| 140 |
+
x0_pred = model(x_t_scaled, t, lq=lr_latent)
|
| 141 |
+
|
| 142 |
+
# Compute x_{t-1} using equation (7)
|
| 143 |
+
if t_step > 0:
|
| 144 |
+
# Equation (7) from ResShift paper:
|
| 145 |
+
# μ_θ = (η_{t-1}/η_t) * x_t + (α_t/η_t) * f_θ(x_t, y_0, t)
|
| 146 |
+
# Σ_θ = κ² * (η_{t-1}/η_t) * α_t
|
| 147 |
+
# x_{t-1} = μ_θ + sqrt(Σ_θ) * ε
|
| 148 |
+
eta_t = eta_schedule[t_step]
|
| 149 |
+
eta_t_minus_1 = eta_schedule[t_step - 1]
|
| 150 |
+
|
| 151 |
+
# Compute alpha_t = η_t - η_{t-1}
|
| 152 |
+
alpha_t = eta_t - eta_t_minus_1
|
| 153 |
+
|
| 154 |
+
# Compute mean: μ_θ = (η_{t-1}/η_t) * x_t + (α_t/η_t) * x0_pred
|
| 155 |
+
mean = (eta_t_minus_1 / eta_t) * x_t + (alpha_t / eta_t) * x0_pred
|
| 156 |
+
|
| 157 |
+
# Compute variance: Σ_θ = κ² * (η_{t-1}/η_t) * α_t
|
| 158 |
+
variance = k**2 * (eta_t_minus_1 / eta_t) * alpha_t
|
| 159 |
+
|
| 160 |
+
# Sample: x_{t-1} = μ_θ + sqrt(Σ_θ) * ε
|
| 161 |
+
noise = torch.randn_like(x_t)
|
| 162 |
+
nonzero_mask = torch.tensor(1.0 if t_step > 0 else 0.0, device=x_t.device).view(-1, *([1] * (len(x_t.shape) - 1)))
|
| 163 |
+
x_t = mean + nonzero_mask * torch.sqrt(variance) * noise
|
| 164 |
+
else:
|
| 165 |
+
x_t = x0_pred
|
| 166 |
+
|
| 167 |
+
# Decode back to pixel space
|
| 168 |
+
sr_latent = x_t
|
| 169 |
+
sr_image = autoencoder.decode(sr_latent) # (1, 3, 256, 256)
|
| 170 |
+
sr_image = sr_image.clamp(0, 1)
|
| 171 |
+
|
| 172 |
+
# Convert to PIL Image
|
| 173 |
+
sr_pil = TF.to_pil_image(sr_image.squeeze(0).cpu())
|
| 174 |
+
|
| 175 |
+
return sr_pil
|
| 176 |
+
|
| 177 |
+
except Exception as e:
|
| 178 |
+
print(f"Error during inference: {str(e)}")
|
| 179 |
+
import traceback
|
| 180 |
+
traceback.print_exc()
|
| 181 |
+
return None
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
# Create Gradio interface
|
| 185 |
+
with gr.Blocks(title="ResShift Super-Resolution") as demo:
|
| 186 |
+
gr.Markdown(
|
| 187 |
+
"""
|
| 188 |
+
# ResShift Super-Resolution
|
| 189 |
+
|
| 190 |
+
Upload a low-resolution image to get a super-resolved version using ResShift diffusion model.
|
| 191 |
+
|
| 192 |
+
**Note**: The model performs 4x super-resolution in latent space (256x256 → 256x256 pixel space, but with enhanced quality).
|
| 193 |
+
"""
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
with gr.Row():
|
| 197 |
+
with gr.Column():
|
| 198 |
+
input_image = gr.Image(
|
| 199 |
+
label="Input Image (Low Resolution)",
|
| 200 |
+
type="pil",
|
| 201 |
+
height=300
|
| 202 |
+
)
|
| 203 |
+
submit_btn = gr.Button("Super-Resolve", variant="primary")
|
| 204 |
+
|
| 205 |
+
with gr.Column():
|
| 206 |
+
output_image = gr.Image(
|
| 207 |
+
label="Super-Resolved Output",
|
| 208 |
+
type="pil",
|
| 209 |
+
height=300
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
status = gr.Textbox(label="Status", value="Loading models...", interactive=False)
|
| 213 |
+
|
| 214 |
+
# Load models on startup
|
| 215 |
+
demo.load(
|
| 216 |
+
fn=load_models,
|
| 217 |
+
outputs=status,
|
| 218 |
+
show_progress=True
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
# Process on button click
|
| 222 |
+
submit_btn.click(
|
| 223 |
+
fn=super_resolve,
|
| 224 |
+
inputs=input_image,
|
| 225 |
+
outputs=output_image,
|
| 226 |
+
show_progress=True
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
# Also process on image upload
|
| 230 |
+
input_image.change(
|
| 231 |
+
fn=super_resolve,
|
| 232 |
+
inputs=input_image,
|
| 233 |
+
outputs=output_image,
|
| 234 |
+
show_progress=True
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
if __name__ == "__main__":
|
| 239 |
+
demo.launch(share=True)
|
| 240 |
+
|
ldm/.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
ldm/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ldm package
|
| 2 |
+
|
ldm/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (165 Bytes). View file
|
|
|
ldm/__pycache__/__init__.cpython-312.pyc
ADDED
|
Binary file (161 Bytes). View file
|
|
|
ldm/__pycache__/util.cpython-311.pyc
ADDED
|
Binary file (11.7 kB). View file
|
|
|
ldm/__pycache__/util.cpython-312.pyc
ADDED
|
Binary file (10.2 kB). View file
|
|
|
ldm/__pycache__/util.cpython-38.pyc
ADDED
|
Binary file (6.16 kB). View file
|
|
|
ldm/models/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ldm.models package
|
| 2 |
+
|
ldm/models/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (172 Bytes). View file
|
|
|
ldm/models/__pycache__/__init__.cpython-312.pyc
ADDED
|
Binary file (168 Bytes). View file
|
|
|
ldm/models/__pycache__/autoencoder.cpython-311.pyc
ADDED
|
Binary file (8.52 kB). View file
|
|
|
ldm/models/__pycache__/autoencoder.cpython-312.pyc
ADDED
|
Binary file (7.31 kB). View file
|
|
|
ldm/models/__pycache__/autoencoder.cpython-38.pyc
ADDED
|
Binary file (4.9 kB). View file
|
|
|
ldm/models/autoencoder.py
ADDED
|
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
from functools import partial
|
| 6 |
+
from contextlib import contextmanager
|
| 7 |
+
|
| 8 |
+
import loralib as lora
|
| 9 |
+
|
| 10 |
+
from ldm.modules.diffusionmodules.model import Encoder, Decoder
|
| 11 |
+
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
| 12 |
+
from ldm.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
|
| 13 |
+
|
| 14 |
+
from ldm.util import instantiate_from_config
|
| 15 |
+
from ldm.modules.ema import LitEma
|
| 16 |
+
|
| 17 |
+
class VQModelTorch(nn.Module):
|
| 18 |
+
def __init__(self,
|
| 19 |
+
ddconfig,
|
| 20 |
+
n_embed,
|
| 21 |
+
embed_dim,
|
| 22 |
+
remap=None,
|
| 23 |
+
rank=8, # rank for lora
|
| 24 |
+
lora_alpha=1.0,
|
| 25 |
+
lora_tune_decoder=False,
|
| 26 |
+
sane_index_shape=False, # tell vector quantizer to return indices as bhw
|
| 27 |
+
):
|
| 28 |
+
super().__init__()
|
| 29 |
+
if lora_tune_decoder:
|
| 30 |
+
conv_layer = partial(lora.Conv2d, r=rank, lora_alpha=lora_alpha)
|
| 31 |
+
else:
|
| 32 |
+
conv_layer = nn.Conv2d
|
| 33 |
+
|
| 34 |
+
self.encoder = Encoder(**ddconfig)
|
| 35 |
+
self.decoder = Decoder(rank=rank, lora_alpha=lora_alpha, lora_tune=lora_tune_decoder, **ddconfig)
|
| 36 |
+
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
|
| 37 |
+
remap=remap, sane_index_shape=sane_index_shape)
|
| 38 |
+
self.quant_conv = nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
|
| 39 |
+
self.post_quant_conv = conv_layer(embed_dim, ddconfig["z_channels"], 1)
|
| 40 |
+
|
| 41 |
+
def encode(self, x):
|
| 42 |
+
h = self.encoder(x)
|
| 43 |
+
h = self.quant_conv(h)
|
| 44 |
+
return h
|
| 45 |
+
|
| 46 |
+
def decode(self, h, force_not_quantize=False):
|
| 47 |
+
if not force_not_quantize:
|
| 48 |
+
quant, emb_loss, info = self.quantize(h)
|
| 49 |
+
else:
|
| 50 |
+
quant = h
|
| 51 |
+
quant = self.post_quant_conv(quant)
|
| 52 |
+
dec = self.decoder(quant)
|
| 53 |
+
return dec
|
| 54 |
+
|
| 55 |
+
def decode_code(self, code_b):
|
| 56 |
+
quant_b = self.quantize.embed_code(code_b)
|
| 57 |
+
dec = self.decode(quant_b, force_not_quantize=True)
|
| 58 |
+
return dec
|
| 59 |
+
|
| 60 |
+
def forward(self, input, force_not_quantize=False):
|
| 61 |
+
h = self.encode(input)
|
| 62 |
+
dec = self.decode(h, force_not_quantize)
|
| 63 |
+
return dec
|
| 64 |
+
|
| 65 |
+
class AutoencoderKLTorch(torch.nn.Module):
|
| 66 |
+
def __init__(self,
|
| 67 |
+
ddconfig,
|
| 68 |
+
embed_dim,
|
| 69 |
+
):
|
| 70 |
+
super().__init__()
|
| 71 |
+
self.encoder = Encoder(**ddconfig)
|
| 72 |
+
self.decoder = Decoder(**ddconfig)
|
| 73 |
+
assert ddconfig["double_z"]
|
| 74 |
+
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
|
| 75 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
| 76 |
+
self.embed_dim = embed_dim
|
| 77 |
+
|
| 78 |
+
def encode(self, x, sample_posterior=True, return_moments=False):
|
| 79 |
+
h = self.encoder(x)
|
| 80 |
+
moments = self.quant_conv(h)
|
| 81 |
+
posterior = DiagonalGaussianDistribution(moments)
|
| 82 |
+
if sample_posterior:
|
| 83 |
+
z = posterior.sample()
|
| 84 |
+
else:
|
| 85 |
+
z = posterior.mode()
|
| 86 |
+
if return_moments:
|
| 87 |
+
return z, moments
|
| 88 |
+
else:
|
| 89 |
+
return z
|
| 90 |
+
|
| 91 |
+
def decode(self, z):
|
| 92 |
+
z = self.post_quant_conv(z)
|
| 93 |
+
dec = self.decoder(z)
|
| 94 |
+
return dec
|
| 95 |
+
|
| 96 |
+
def forward(self, input, sample_posterior=True):
|
| 97 |
+
z = self.encode(input, sample_posterior, return_moments=False)
|
| 98 |
+
dec = self.decode(z)
|
| 99 |
+
return dec
|
| 100 |
+
|
| 101 |
+
class EncoderKLTorch(torch.nn.Module):
|
| 102 |
+
def __init__(self,
|
| 103 |
+
ddconfig,
|
| 104 |
+
embed_dim,
|
| 105 |
+
):
|
| 106 |
+
super().__init__()
|
| 107 |
+
self.encoder = Encoder(**ddconfig)
|
| 108 |
+
assert ddconfig["double_z"]
|
| 109 |
+
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
|
| 110 |
+
self.embed_dim = embed_dim
|
| 111 |
+
|
| 112 |
+
def encode(self, x, sample_posterior=True, return_moments=False):
|
| 113 |
+
h = self.encoder(x)
|
| 114 |
+
moments = self.quant_conv(h)
|
| 115 |
+
posterior = DiagonalGaussianDistribution(moments)
|
| 116 |
+
if sample_posterior:
|
| 117 |
+
z = posterior.sample()
|
| 118 |
+
else:
|
| 119 |
+
z = posterior.mode()
|
| 120 |
+
if return_moments:
|
| 121 |
+
return z, moments
|
| 122 |
+
else:
|
| 123 |
+
return z
|
| 124 |
+
def forward(self, x, sample_posterior=True, return_moments=False):
|
| 125 |
+
return self.encode(x, sample_posterior, return_moments)
|
| 126 |
+
|
| 127 |
+
class IdentityFirstStage(torch.nn.Module):
|
| 128 |
+
def __init__(self, *args, vq_interface=False, **kwargs):
|
| 129 |
+
self.vq_interface = vq_interface
|
| 130 |
+
super().__init__()
|
| 131 |
+
|
| 132 |
+
def encode(self, x, *args, **kwargs):
|
| 133 |
+
return x
|
| 134 |
+
|
| 135 |
+
def decode(self, x, *args, **kwargs):
|
| 136 |
+
return x
|
| 137 |
+
|
| 138 |
+
def quantize(self, x, *args, **kwargs):
|
| 139 |
+
if self.vq_interface:
|
| 140 |
+
return x, None, [None, None, None]
|
| 141 |
+
return x
|
| 142 |
+
|
| 143 |
+
def forward(self, x, *args, **kwargs):
|
| 144 |
+
return x
|
| 145 |
+
|
ldm/modules/.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
ldm/modules/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ldm.modules package
|
| 2 |
+
|
ldm/modules/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (173 Bytes). View file
|
|
|
ldm/modules/__pycache__/__init__.cpython-312.pyc
ADDED
|
Binary file (169 Bytes). View file
|
|
|
ldm/modules/__pycache__/attention.cpython-311.pyc
ADDED
|
Binary file (20.3 kB). View file
|
|
|
ldm/modules/__pycache__/attention.cpython-312.pyc
ADDED
|
Binary file (17.7 kB). View file
|
|
|
ldm/modules/__pycache__/ema.cpython-311.pyc
ADDED
|
Binary file (5.83 kB). View file
|
|
|
ldm/modules/__pycache__/ema.cpython-312.pyc
ADDED
|
Binary file (5.19 kB). View file
|
|
|
ldm/modules/__pycache__/ema.cpython-38.pyc
ADDED
|
Binary file (3.19 kB). View file
|
|
|
ldm/modules/attention.py
ADDED
|
@@ -0,0 +1,341 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from inspect import isfunction
|
| 2 |
+
import math
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from torch import nn, einsum
|
| 6 |
+
from einops import rearrange, repeat
|
| 7 |
+
from typing import Optional, Any
|
| 8 |
+
|
| 9 |
+
from ldm.modules.diffusionmodules.util import checkpoint
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
try:
|
| 13 |
+
import xformers
|
| 14 |
+
import xformers.ops
|
| 15 |
+
XFORMERS_IS_AVAILBLE = True
|
| 16 |
+
except:
|
| 17 |
+
XFORMERS_IS_AVAILBLE = False
|
| 18 |
+
|
| 19 |
+
# CrossAttn precision handling
|
| 20 |
+
import os
|
| 21 |
+
_ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32")
|
| 22 |
+
|
| 23 |
+
def exists(val):
|
| 24 |
+
return val is not None
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def uniq(arr):
|
| 28 |
+
return{el: True for el in arr}.keys()
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def default(val, d):
|
| 32 |
+
if exists(val):
|
| 33 |
+
return val
|
| 34 |
+
return d() if isfunction(d) else d
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def max_neg_value(t):
|
| 38 |
+
return -torch.finfo(t.dtype).max
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def init_(tensor):
|
| 42 |
+
dim = tensor.shape[-1]
|
| 43 |
+
std = 1 / math.sqrt(dim)
|
| 44 |
+
tensor.uniform_(-std, std)
|
| 45 |
+
return tensor
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
# feedforward
|
| 49 |
+
class GEGLU(nn.Module):
|
| 50 |
+
def __init__(self, dim_in, dim_out):
|
| 51 |
+
super().__init__()
|
| 52 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
| 53 |
+
|
| 54 |
+
def forward(self, x):
|
| 55 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
| 56 |
+
return x * F.gelu(gate)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
class FeedForward(nn.Module):
|
| 60 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
| 61 |
+
super().__init__()
|
| 62 |
+
inner_dim = int(dim * mult)
|
| 63 |
+
dim_out = default(dim_out, dim)
|
| 64 |
+
project_in = nn.Sequential(
|
| 65 |
+
nn.Linear(dim, inner_dim),
|
| 66 |
+
nn.GELU()
|
| 67 |
+
) if not glu else GEGLU(dim, inner_dim)
|
| 68 |
+
|
| 69 |
+
self.net = nn.Sequential(
|
| 70 |
+
project_in,
|
| 71 |
+
nn.Dropout(dropout),
|
| 72 |
+
nn.Linear(inner_dim, dim_out)
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
def forward(self, x):
|
| 76 |
+
return self.net(x)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def zero_module(module):
|
| 80 |
+
"""
|
| 81 |
+
Zero out the parameters of a module and return it.
|
| 82 |
+
"""
|
| 83 |
+
for p in module.parameters():
|
| 84 |
+
p.detach().zero_()
|
| 85 |
+
return module
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def Normalize(in_channels):
|
| 89 |
+
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
class SpatialSelfAttention(nn.Module):
|
| 93 |
+
def __init__(self, in_channels):
|
| 94 |
+
super().__init__()
|
| 95 |
+
self.in_channels = in_channels
|
| 96 |
+
|
| 97 |
+
self.norm = Normalize(in_channels)
|
| 98 |
+
self.q = torch.nn.Conv2d(in_channels,
|
| 99 |
+
in_channels,
|
| 100 |
+
kernel_size=1,
|
| 101 |
+
stride=1,
|
| 102 |
+
padding=0)
|
| 103 |
+
self.k = torch.nn.Conv2d(in_channels,
|
| 104 |
+
in_channels,
|
| 105 |
+
kernel_size=1,
|
| 106 |
+
stride=1,
|
| 107 |
+
padding=0)
|
| 108 |
+
self.v = torch.nn.Conv2d(in_channels,
|
| 109 |
+
in_channels,
|
| 110 |
+
kernel_size=1,
|
| 111 |
+
stride=1,
|
| 112 |
+
padding=0)
|
| 113 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
| 114 |
+
in_channels,
|
| 115 |
+
kernel_size=1,
|
| 116 |
+
stride=1,
|
| 117 |
+
padding=0)
|
| 118 |
+
|
| 119 |
+
def forward(self, x):
|
| 120 |
+
h_ = x
|
| 121 |
+
h_ = self.norm(h_)
|
| 122 |
+
q = self.q(h_)
|
| 123 |
+
k = self.k(h_)
|
| 124 |
+
v = self.v(h_)
|
| 125 |
+
|
| 126 |
+
# compute attention
|
| 127 |
+
b,c,h,w = q.shape
|
| 128 |
+
q = rearrange(q, 'b c h w -> b (h w) c')
|
| 129 |
+
k = rearrange(k, 'b c h w -> b c (h w)')
|
| 130 |
+
w_ = torch.einsum('bij,bjk->bik', q, k)
|
| 131 |
+
|
| 132 |
+
w_ = w_ * (int(c)**(-0.5))
|
| 133 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
| 134 |
+
|
| 135 |
+
# attend to values
|
| 136 |
+
v = rearrange(v, 'b c h w -> b c (h w)')
|
| 137 |
+
w_ = rearrange(w_, 'b i j -> b j i')
|
| 138 |
+
h_ = torch.einsum('bij,bjk->bik', v, w_)
|
| 139 |
+
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
|
| 140 |
+
h_ = self.proj_out(h_)
|
| 141 |
+
|
| 142 |
+
return x+h_
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
class CrossAttention(nn.Module):
|
| 146 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
|
| 147 |
+
super().__init__()
|
| 148 |
+
inner_dim = dim_head * heads
|
| 149 |
+
context_dim = default(context_dim, query_dim)
|
| 150 |
+
|
| 151 |
+
self.scale = dim_head ** -0.5
|
| 152 |
+
self.heads = heads
|
| 153 |
+
|
| 154 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
| 155 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
| 156 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
| 157 |
+
|
| 158 |
+
self.to_out = nn.Sequential(
|
| 159 |
+
nn.Linear(inner_dim, query_dim),
|
| 160 |
+
nn.Dropout(dropout)
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
def forward(self, x, context=None, mask=None):
|
| 164 |
+
h = self.heads
|
| 165 |
+
|
| 166 |
+
q = self.to_q(x)
|
| 167 |
+
context = default(context, x)
|
| 168 |
+
k = self.to_k(context)
|
| 169 |
+
v = self.to_v(context)
|
| 170 |
+
|
| 171 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
| 172 |
+
|
| 173 |
+
# force cast to fp32 to avoid overflowing
|
| 174 |
+
if _ATTN_PRECISION =="fp32":
|
| 175 |
+
with torch.autocast(enabled=False, device_type = 'cuda'):
|
| 176 |
+
q, k = q.float(), k.float()
|
| 177 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
| 178 |
+
else:
|
| 179 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
| 180 |
+
|
| 181 |
+
del q, k
|
| 182 |
+
|
| 183 |
+
if exists(mask):
|
| 184 |
+
mask = rearrange(mask, 'b ... -> b (...)')
|
| 185 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
| 186 |
+
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
| 187 |
+
sim.masked_fill_(~mask, max_neg_value)
|
| 188 |
+
|
| 189 |
+
# attention, what we cannot get enough of
|
| 190 |
+
sim = sim.softmax(dim=-1)
|
| 191 |
+
|
| 192 |
+
out = einsum('b i j, b j d -> b i d', sim, v)
|
| 193 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
| 194 |
+
return self.to_out(out)
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
class MemoryEfficientCrossAttention(nn.Module):
|
| 198 |
+
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
| 199 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
|
| 200 |
+
super().__init__()
|
| 201 |
+
print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
|
| 202 |
+
f"{heads} heads.")
|
| 203 |
+
inner_dim = dim_head * heads
|
| 204 |
+
context_dim = default(context_dim, query_dim)
|
| 205 |
+
|
| 206 |
+
self.heads = heads
|
| 207 |
+
self.dim_head = dim_head
|
| 208 |
+
|
| 209 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
| 210 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
| 211 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
| 212 |
+
|
| 213 |
+
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
|
| 214 |
+
self.attention_op: Optional[Any] = None
|
| 215 |
+
|
| 216 |
+
def forward(self, x, context=None, mask=None):
|
| 217 |
+
q = self.to_q(x)
|
| 218 |
+
context = default(context, x)
|
| 219 |
+
k = self.to_k(context)
|
| 220 |
+
v = self.to_v(context)
|
| 221 |
+
|
| 222 |
+
b, _, _ = q.shape
|
| 223 |
+
q, k, v = map(
|
| 224 |
+
lambda t: t.unsqueeze(3)
|
| 225 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
| 226 |
+
.permute(0, 2, 1, 3)
|
| 227 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
| 228 |
+
.contiguous(),
|
| 229 |
+
(q, k, v),
|
| 230 |
+
)
|
| 231 |
+
|
| 232 |
+
# actually compute the attention, what we cannot get enough of
|
| 233 |
+
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
|
| 234 |
+
|
| 235 |
+
if exists(mask):
|
| 236 |
+
raise NotImplementedError
|
| 237 |
+
out = (
|
| 238 |
+
out.unsqueeze(0)
|
| 239 |
+
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
| 240 |
+
.permute(0, 2, 1, 3)
|
| 241 |
+
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
| 242 |
+
)
|
| 243 |
+
return self.to_out(out)
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
class BasicTransformerBlock(nn.Module):
|
| 247 |
+
ATTENTION_MODES = {
|
| 248 |
+
"softmax": CrossAttention, # vanilla attention
|
| 249 |
+
"softmax-xformers": MemoryEfficientCrossAttention
|
| 250 |
+
}
|
| 251 |
+
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
|
| 252 |
+
disable_self_attn=False):
|
| 253 |
+
super().__init__()
|
| 254 |
+
attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax"
|
| 255 |
+
assert attn_mode in self.ATTENTION_MODES
|
| 256 |
+
attn_cls = self.ATTENTION_MODES[attn_mode]
|
| 257 |
+
self.disable_self_attn = disable_self_attn
|
| 258 |
+
self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
|
| 259 |
+
context_dim=context_dim if self.disable_self_attn else None) # is a self-attention if not self.disable_self_attn
|
| 260 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
| 261 |
+
self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim,
|
| 262 |
+
heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
|
| 263 |
+
self.norm1 = nn.LayerNorm(dim)
|
| 264 |
+
self.norm2 = nn.LayerNorm(dim)
|
| 265 |
+
self.norm3 = nn.LayerNorm(dim)
|
| 266 |
+
self.checkpoint = checkpoint
|
| 267 |
+
|
| 268 |
+
def forward(self, x, context=None):
|
| 269 |
+
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
|
| 270 |
+
|
| 271 |
+
def _forward(self, x, context=None):
|
| 272 |
+
x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x
|
| 273 |
+
x = self.attn2(self.norm2(x), context=context) + x
|
| 274 |
+
x = self.ff(self.norm3(x)) + x
|
| 275 |
+
return x
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
class SpatialTransformer(nn.Module):
|
| 279 |
+
"""
|
| 280 |
+
Transformer block for image-like data.
|
| 281 |
+
First, project the input (aka embedding)
|
| 282 |
+
and reshape to b, t, d.
|
| 283 |
+
Then apply standard transformer action.
|
| 284 |
+
Finally, reshape to image
|
| 285 |
+
NEW: use_linear for more efficiency instead of the 1x1 convs
|
| 286 |
+
"""
|
| 287 |
+
def __init__(self, in_channels, n_heads, d_head,
|
| 288 |
+
depth=1, dropout=0., context_dim=None,
|
| 289 |
+
disable_self_attn=False, use_linear=False,
|
| 290 |
+
use_checkpoint=True):
|
| 291 |
+
super().__init__()
|
| 292 |
+
if exists(context_dim) and not isinstance(context_dim, list):
|
| 293 |
+
context_dim = [context_dim]
|
| 294 |
+
self.in_channels = in_channels
|
| 295 |
+
inner_dim = n_heads * d_head
|
| 296 |
+
self.norm = Normalize(in_channels)
|
| 297 |
+
if not use_linear:
|
| 298 |
+
self.proj_in = nn.Conv2d(in_channels,
|
| 299 |
+
inner_dim,
|
| 300 |
+
kernel_size=1,
|
| 301 |
+
stride=1,
|
| 302 |
+
padding=0)
|
| 303 |
+
else:
|
| 304 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
| 305 |
+
|
| 306 |
+
self.transformer_blocks = nn.ModuleList(
|
| 307 |
+
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
|
| 308 |
+
disable_self_attn=disable_self_attn, checkpoint=use_checkpoint)
|
| 309 |
+
for d in range(depth)]
|
| 310 |
+
)
|
| 311 |
+
if not use_linear:
|
| 312 |
+
self.proj_out = zero_module(nn.Conv2d(inner_dim,
|
| 313 |
+
in_channels,
|
| 314 |
+
kernel_size=1,
|
| 315 |
+
stride=1,
|
| 316 |
+
padding=0))
|
| 317 |
+
else:
|
| 318 |
+
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
|
| 319 |
+
self.use_linear = use_linear
|
| 320 |
+
|
| 321 |
+
def forward(self, x, context=None):
|
| 322 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
| 323 |
+
if not isinstance(context, list):
|
| 324 |
+
context = [context]
|
| 325 |
+
b, c, h, w = x.shape
|
| 326 |
+
x_in = x
|
| 327 |
+
x = self.norm(x)
|
| 328 |
+
if not self.use_linear:
|
| 329 |
+
x = self.proj_in(x)
|
| 330 |
+
x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
|
| 331 |
+
if self.use_linear:
|
| 332 |
+
x = self.proj_in(x)
|
| 333 |
+
for i, block in enumerate(self.transformer_blocks):
|
| 334 |
+
x = block(x, context=context[i])
|
| 335 |
+
if self.use_linear:
|
| 336 |
+
x = self.proj_out(x)
|
| 337 |
+
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
|
| 338 |
+
if not self.use_linear:
|
| 339 |
+
x = self.proj_out(x)
|
| 340 |
+
return x + x_in
|
| 341 |
+
|
ldm/modules/diffusionmodules/__init__.py
ADDED
|
File without changes
|
ldm/modules/diffusionmodules/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (190 Bytes). View file
|
|
|
ldm/modules/diffusionmodules/__pycache__/__init__.cpython-312.pyc
ADDED
|
Binary file (186 Bytes). View file
|
|
|
ldm/modules/diffusionmodules/__pycache__/__init__.cpython-38.pyc
ADDED
|
Binary file (165 Bytes). View file
|
|
|
ldm/modules/diffusionmodules/__pycache__/model.cpython-311.pyc
ADDED
|
Binary file (45.3 kB). View file
|
|
|
ldm/modules/diffusionmodules/__pycache__/model.cpython-312.pyc
ADDED
|
Binary file (40.7 kB). View file
|
|
|
ldm/modules/diffusionmodules/__pycache__/model.cpython-38.pyc
ADDED
|
Binary file (15.8 kB). View file
|
|
|
ldm/modules/diffusionmodules/__pycache__/util.cpython-311.pyc
ADDED
|
Binary file (16.5 kB). View file
|
|
|
ldm/modules/diffusionmodules/__pycache__/util.cpython-312.pyc
ADDED
|
Binary file (14.9 kB). View file
|
|
|
ldm/modules/diffusionmodules/model.py
ADDED
|
@@ -0,0 +1,860 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# pytorch_diffusion + derived encoder decoder
|
| 2 |
+
import math
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import numpy as np
|
| 6 |
+
from einops import rearrange
|
| 7 |
+
from typing import Optional, Any
|
| 8 |
+
|
| 9 |
+
from ldm.modules.attention import MemoryEfficientCrossAttention
|
| 10 |
+
|
| 11 |
+
try:
|
| 12 |
+
import xformers
|
| 13 |
+
import xformers.ops
|
| 14 |
+
XFORMERS_IS_AVAILBLE = True
|
| 15 |
+
except:
|
| 16 |
+
XFORMERS_IS_AVAILBLE = False
|
| 17 |
+
print("No module 'xformers'. Proceeding without it.")
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def get_timestep_embedding(timesteps, embedding_dim):
|
| 21 |
+
"""
|
| 22 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
| 23 |
+
From Fairseq.
|
| 24 |
+
Build sinusoidal embeddings.
|
| 25 |
+
This matches the implementation in tensor2tensor, but differs slightly
|
| 26 |
+
from the description in Section 3.5 of "Attention Is All You Need".
|
| 27 |
+
"""
|
| 28 |
+
assert len(timesteps.shape) == 1
|
| 29 |
+
|
| 30 |
+
half_dim = embedding_dim // 2
|
| 31 |
+
emb = math.log(10000) / (half_dim - 1)
|
| 32 |
+
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
| 33 |
+
emb = emb.to(device=timesteps.device)
|
| 34 |
+
emb = timesteps.float()[:, None] * emb[None, :]
|
| 35 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
| 36 |
+
if embedding_dim % 2 == 1: # zero pad
|
| 37 |
+
emb = torch.nn.functional.pad(emb, (0,1,0,0))
|
| 38 |
+
return emb
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def nonlinearity(x):
|
| 42 |
+
# swish
|
| 43 |
+
return x*torch.sigmoid(x)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def Normalize(in_channels, num_groups=32):
|
| 47 |
+
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
class Upsample(nn.Module):
|
| 51 |
+
def __init__(self, in_channels, with_conv):
|
| 52 |
+
super().__init__()
|
| 53 |
+
self.with_conv = with_conv
|
| 54 |
+
if self.with_conv:
|
| 55 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
| 56 |
+
in_channels,
|
| 57 |
+
kernel_size=3,
|
| 58 |
+
stride=1,
|
| 59 |
+
padding=1)
|
| 60 |
+
|
| 61 |
+
def forward(self, x):
|
| 62 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
| 63 |
+
if self.with_conv:
|
| 64 |
+
x = self.conv(x)
|
| 65 |
+
return x
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
class Downsample(nn.Module):
|
| 69 |
+
def __init__(self, in_channels, with_conv):
|
| 70 |
+
super().__init__()
|
| 71 |
+
self.with_conv = with_conv
|
| 72 |
+
if self.with_conv:
|
| 73 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
| 74 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
| 75 |
+
in_channels,
|
| 76 |
+
kernel_size=3,
|
| 77 |
+
stride=2,
|
| 78 |
+
padding=0)
|
| 79 |
+
|
| 80 |
+
def forward(self, x):
|
| 81 |
+
if self.with_conv:
|
| 82 |
+
pad = (0,1,0,1)
|
| 83 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
| 84 |
+
x = self.conv(x)
|
| 85 |
+
else:
|
| 86 |
+
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
| 87 |
+
return x
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
class ResnetBlock(nn.Module):
|
| 91 |
+
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
|
| 92 |
+
dropout, temb_channels=512):
|
| 93 |
+
super().__init__()
|
| 94 |
+
self.in_channels = in_channels
|
| 95 |
+
out_channels = in_channels if out_channels is None else out_channels
|
| 96 |
+
self.out_channels = out_channels
|
| 97 |
+
self.use_conv_shortcut = conv_shortcut
|
| 98 |
+
|
| 99 |
+
self.norm1 = Normalize(in_channels)
|
| 100 |
+
self.conv1 = torch.nn.Conv2d(in_channels,
|
| 101 |
+
out_channels,
|
| 102 |
+
kernel_size=3,
|
| 103 |
+
stride=1,
|
| 104 |
+
padding=1)
|
| 105 |
+
if temb_channels > 0:
|
| 106 |
+
self.temb_proj = torch.nn.Linear(temb_channels,
|
| 107 |
+
out_channels)
|
| 108 |
+
self.norm2 = Normalize(out_channels)
|
| 109 |
+
self.dropout = torch.nn.Dropout(dropout)
|
| 110 |
+
self.conv2 = torch.nn.Conv2d(out_channels,
|
| 111 |
+
out_channels,
|
| 112 |
+
kernel_size=3,
|
| 113 |
+
stride=1,
|
| 114 |
+
padding=1)
|
| 115 |
+
if self.in_channels != self.out_channels:
|
| 116 |
+
if self.use_conv_shortcut:
|
| 117 |
+
self.conv_shortcut = torch.nn.Conv2d(in_channels,
|
| 118 |
+
out_channels,
|
| 119 |
+
kernel_size=3,
|
| 120 |
+
stride=1,
|
| 121 |
+
padding=1)
|
| 122 |
+
else:
|
| 123 |
+
self.nin_shortcut = torch.nn.Conv2d(in_channels,
|
| 124 |
+
out_channels,
|
| 125 |
+
kernel_size=1,
|
| 126 |
+
stride=1,
|
| 127 |
+
padding=0)
|
| 128 |
+
|
| 129 |
+
def forward(self, x, temb):
|
| 130 |
+
h = x
|
| 131 |
+
h = self.norm1(h)
|
| 132 |
+
h = nonlinearity(h)
|
| 133 |
+
h = self.conv1(h)
|
| 134 |
+
|
| 135 |
+
if temb is not None:
|
| 136 |
+
h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
|
| 137 |
+
|
| 138 |
+
h = self.norm2(h)
|
| 139 |
+
h = nonlinearity(h)
|
| 140 |
+
h = self.dropout(h)
|
| 141 |
+
h = self.conv2(h)
|
| 142 |
+
|
| 143 |
+
if self.in_channels != self.out_channels:
|
| 144 |
+
if self.use_conv_shortcut:
|
| 145 |
+
x = self.conv_shortcut(x)
|
| 146 |
+
else:
|
| 147 |
+
x = self.nin_shortcut(x)
|
| 148 |
+
|
| 149 |
+
return x+h
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
class AttnBlock(nn.Module):
|
| 153 |
+
def __init__(self, in_channels):
|
| 154 |
+
super().__init__()
|
| 155 |
+
self.in_channels = in_channels
|
| 156 |
+
|
| 157 |
+
self.norm = Normalize(in_channels)
|
| 158 |
+
self.q = torch.nn.Conv2d(in_channels,
|
| 159 |
+
in_channels,
|
| 160 |
+
kernel_size=1,
|
| 161 |
+
stride=1,
|
| 162 |
+
padding=0)
|
| 163 |
+
self.k = torch.nn.Conv2d(in_channels,
|
| 164 |
+
in_channels,
|
| 165 |
+
kernel_size=1,
|
| 166 |
+
stride=1,
|
| 167 |
+
padding=0)
|
| 168 |
+
self.v = torch.nn.Conv2d(in_channels,
|
| 169 |
+
in_channels,
|
| 170 |
+
kernel_size=1,
|
| 171 |
+
stride=1,
|
| 172 |
+
padding=0)
|
| 173 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
| 174 |
+
in_channels,
|
| 175 |
+
kernel_size=1,
|
| 176 |
+
stride=1,
|
| 177 |
+
padding=0)
|
| 178 |
+
|
| 179 |
+
def forward(self, x):
|
| 180 |
+
h_ = x
|
| 181 |
+
h_ = self.norm(h_)
|
| 182 |
+
q = self.q(h_)
|
| 183 |
+
k = self.k(h_)
|
| 184 |
+
v = self.v(h_)
|
| 185 |
+
|
| 186 |
+
# compute attention
|
| 187 |
+
b,c,h,w = q.shape
|
| 188 |
+
q = q.reshape(b,c,h*w)
|
| 189 |
+
q = q.permute(0,2,1) # b,hw,c
|
| 190 |
+
k = k.reshape(b,c,h*w) # b,c,hw
|
| 191 |
+
w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
| 192 |
+
w_ = w_ * (int(c)**(-0.5))
|
| 193 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
| 194 |
+
|
| 195 |
+
# attend to values
|
| 196 |
+
v = v.reshape(b,c,h*w)
|
| 197 |
+
w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
|
| 198 |
+
h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
| 199 |
+
h_ = h_.reshape(b,c,h,w)
|
| 200 |
+
|
| 201 |
+
h_ = self.proj_out(h_)
|
| 202 |
+
|
| 203 |
+
return x+h_
|
| 204 |
+
|
| 205 |
+
class MemoryEfficientAttnBlock(nn.Module):
|
| 206 |
+
"""
|
| 207 |
+
Uses xformers efficient implementation,
|
| 208 |
+
see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
| 209 |
+
Note: this is a single-head self-attention operation
|
| 210 |
+
"""
|
| 211 |
+
#
|
| 212 |
+
def __init__(self, in_channels):
|
| 213 |
+
super().__init__()
|
| 214 |
+
self.in_channels = in_channels
|
| 215 |
+
|
| 216 |
+
self.norm = Normalize(in_channels)
|
| 217 |
+
self.q = torch.nn.Conv2d(in_channels,
|
| 218 |
+
in_channels,
|
| 219 |
+
kernel_size=1,
|
| 220 |
+
stride=1,
|
| 221 |
+
padding=0)
|
| 222 |
+
self.k = torch.nn.Conv2d(in_channels,
|
| 223 |
+
in_channels,
|
| 224 |
+
kernel_size=1,
|
| 225 |
+
stride=1,
|
| 226 |
+
padding=0)
|
| 227 |
+
self.v = torch.nn.Conv2d(in_channels,
|
| 228 |
+
in_channels,
|
| 229 |
+
kernel_size=1,
|
| 230 |
+
stride=1,
|
| 231 |
+
padding=0)
|
| 232 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
| 233 |
+
in_channels,
|
| 234 |
+
kernel_size=1,
|
| 235 |
+
stride=1,
|
| 236 |
+
padding=0)
|
| 237 |
+
self.attention_op: Optional[Any] = None
|
| 238 |
+
|
| 239 |
+
def forward(self, x):
|
| 240 |
+
h_ = x
|
| 241 |
+
h_ = self.norm(h_)
|
| 242 |
+
q = self.q(h_)
|
| 243 |
+
k = self.k(h_)
|
| 244 |
+
v = self.v(h_)
|
| 245 |
+
|
| 246 |
+
# compute attention
|
| 247 |
+
B, C, H, W = q.shape
|
| 248 |
+
q, k, v = map(lambda x: rearrange(x, 'b c h w -> b (h w) c'), (q, k, v)) # b x hw x c
|
| 249 |
+
|
| 250 |
+
q, k, v = map(
|
| 251 |
+
lambda t: t.unsqueeze(3) # b x hw x c x 1
|
| 252 |
+
.reshape(B, t.shape[1], 1, C) # b x hw x 1 x c
|
| 253 |
+
.permute(0, 2, 1, 3) # b x 1 x hw x c
|
| 254 |
+
.reshape(B * 1, t.shape[1], C) # b x hw x c
|
| 255 |
+
.contiguous(),
|
| 256 |
+
(q, k, v),
|
| 257 |
+
)
|
| 258 |
+
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
|
| 259 |
+
|
| 260 |
+
out = (
|
| 261 |
+
out.unsqueeze(0)
|
| 262 |
+
.reshape(B, 1, out.shape[1], C)
|
| 263 |
+
.permute(0, 2, 1, 3)
|
| 264 |
+
.reshape(B, out.shape[1], C)
|
| 265 |
+
)
|
| 266 |
+
out = rearrange(out, 'b (h w) c -> b c h w', b=B, h=H, w=W, c=C)
|
| 267 |
+
out = self.proj_out(out)
|
| 268 |
+
return x+out
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention):
|
| 272 |
+
def forward(self, x, context=None, mask=None):
|
| 273 |
+
b, c, h, w = x.shape
|
| 274 |
+
x = rearrange(x, 'b c h w -> b (h w) c')
|
| 275 |
+
out = super().forward(x, context=context, mask=mask)
|
| 276 |
+
out = rearrange(out, 'b (h w) c -> b c h w', h=h, w=w, c=c)
|
| 277 |
+
return x + out
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
|
| 281 |
+
assert attn_type in ["vanilla", "vanilla-xformers", "memory-efficient-cross-attn", "linear", "none"], f'attn_type {attn_type} unknown'
|
| 282 |
+
if XFORMERS_IS_AVAILBLE and attn_type == "vanilla":
|
| 283 |
+
attn_type = "vanilla-xformers"
|
| 284 |
+
# print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
|
| 285 |
+
if attn_type == "vanilla":
|
| 286 |
+
assert attn_kwargs is None
|
| 287 |
+
return AttnBlock(in_channels)
|
| 288 |
+
elif attn_type == "vanilla-xformers":
|
| 289 |
+
print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...")
|
| 290 |
+
return MemoryEfficientAttnBlock(in_channels)
|
| 291 |
+
elif type == "memory-efficient-cross-attn":
|
| 292 |
+
attn_kwargs["query_dim"] = in_channels
|
| 293 |
+
return MemoryEfficientCrossAttentionWrapper(**attn_kwargs)
|
| 294 |
+
elif attn_type == "none":
|
| 295 |
+
return nn.Identity(in_channels)
|
| 296 |
+
else:
|
| 297 |
+
raise NotImplementedError()
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
class Model(nn.Module):
|
| 301 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
| 302 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
| 303 |
+
resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
|
| 304 |
+
super().__init__()
|
| 305 |
+
if use_linear_attn: attn_type = "linear"
|
| 306 |
+
self.ch = ch
|
| 307 |
+
self.temb_ch = self.ch*4
|
| 308 |
+
self.num_resolutions = len(ch_mult)
|
| 309 |
+
self.num_res_blocks = num_res_blocks
|
| 310 |
+
self.resolution = resolution
|
| 311 |
+
self.in_channels = in_channels
|
| 312 |
+
|
| 313 |
+
self.use_timestep = use_timestep
|
| 314 |
+
if self.use_timestep:
|
| 315 |
+
# timestep embedding
|
| 316 |
+
self.temb = nn.Module()
|
| 317 |
+
self.temb.dense = nn.ModuleList([
|
| 318 |
+
torch.nn.Linear(self.ch,
|
| 319 |
+
self.temb_ch),
|
| 320 |
+
torch.nn.Linear(self.temb_ch,
|
| 321 |
+
self.temb_ch),
|
| 322 |
+
])
|
| 323 |
+
|
| 324 |
+
# downsampling
|
| 325 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
| 326 |
+
self.ch,
|
| 327 |
+
kernel_size=3,
|
| 328 |
+
stride=1,
|
| 329 |
+
padding=1)
|
| 330 |
+
|
| 331 |
+
curr_res = resolution
|
| 332 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
| 333 |
+
self.down = nn.ModuleList()
|
| 334 |
+
for i_level in range(self.num_resolutions):
|
| 335 |
+
block = nn.ModuleList()
|
| 336 |
+
attn = nn.ModuleList()
|
| 337 |
+
block_in = ch*in_ch_mult[i_level]
|
| 338 |
+
block_out = ch*ch_mult[i_level]
|
| 339 |
+
for i_block in range(self.num_res_blocks):
|
| 340 |
+
block.append(ResnetBlock(in_channels=block_in,
|
| 341 |
+
out_channels=block_out,
|
| 342 |
+
temb_channels=self.temb_ch,
|
| 343 |
+
dropout=dropout))
|
| 344 |
+
block_in = block_out
|
| 345 |
+
if curr_res in attn_resolutions:
|
| 346 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
| 347 |
+
down = nn.Module()
|
| 348 |
+
down.block = block
|
| 349 |
+
down.attn = attn
|
| 350 |
+
if i_level != self.num_resolutions-1:
|
| 351 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
| 352 |
+
curr_res = curr_res // 2
|
| 353 |
+
self.down.append(down)
|
| 354 |
+
|
| 355 |
+
# middle
|
| 356 |
+
self.mid = nn.Module()
|
| 357 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
| 358 |
+
out_channels=block_in,
|
| 359 |
+
temb_channels=self.temb_ch,
|
| 360 |
+
dropout=dropout)
|
| 361 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
| 362 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
| 363 |
+
out_channels=block_in,
|
| 364 |
+
temb_channels=self.temb_ch,
|
| 365 |
+
dropout=dropout)
|
| 366 |
+
|
| 367 |
+
# upsampling
|
| 368 |
+
self.up = nn.ModuleList()
|
| 369 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 370 |
+
block = nn.ModuleList()
|
| 371 |
+
attn = nn.ModuleList()
|
| 372 |
+
block_out = ch*ch_mult[i_level]
|
| 373 |
+
skip_in = ch*ch_mult[i_level]
|
| 374 |
+
for i_block in range(self.num_res_blocks+1):
|
| 375 |
+
if i_block == self.num_res_blocks:
|
| 376 |
+
skip_in = ch*in_ch_mult[i_level]
|
| 377 |
+
block.append(ResnetBlock(in_channels=block_in+skip_in,
|
| 378 |
+
out_channels=block_out,
|
| 379 |
+
temb_channels=self.temb_ch,
|
| 380 |
+
dropout=dropout))
|
| 381 |
+
block_in = block_out
|
| 382 |
+
if curr_res in attn_resolutions:
|
| 383 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
| 384 |
+
up = nn.Module()
|
| 385 |
+
up.block = block
|
| 386 |
+
up.attn = attn
|
| 387 |
+
if i_level != 0:
|
| 388 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
| 389 |
+
curr_res = curr_res * 2
|
| 390 |
+
self.up.insert(0, up) # prepend to get consistent order
|
| 391 |
+
|
| 392 |
+
# end
|
| 393 |
+
self.norm_out = Normalize(block_in)
|
| 394 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
| 395 |
+
out_ch,
|
| 396 |
+
kernel_size=3,
|
| 397 |
+
stride=1,
|
| 398 |
+
padding=1)
|
| 399 |
+
|
| 400 |
+
def forward(self, x, t=None, context=None):
|
| 401 |
+
#assert x.shape[2] == x.shape[3] == self.resolution
|
| 402 |
+
if context is not None:
|
| 403 |
+
# assume aligned context, cat along channel axis
|
| 404 |
+
x = torch.cat((x, context), dim=1)
|
| 405 |
+
if self.use_timestep:
|
| 406 |
+
# timestep embedding
|
| 407 |
+
assert t is not None
|
| 408 |
+
temb = get_timestep_embedding(t, self.ch)
|
| 409 |
+
temb = self.temb.dense[0](temb)
|
| 410 |
+
temb = nonlinearity(temb)
|
| 411 |
+
temb = self.temb.dense[1](temb)
|
| 412 |
+
else:
|
| 413 |
+
temb = None
|
| 414 |
+
|
| 415 |
+
# downsampling
|
| 416 |
+
hs = [self.conv_in(x)]
|
| 417 |
+
for i_level in range(self.num_resolutions):
|
| 418 |
+
for i_block in range(self.num_res_blocks):
|
| 419 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
| 420 |
+
if len(self.down[i_level].attn) > 0:
|
| 421 |
+
h = self.down[i_level].attn[i_block](h)
|
| 422 |
+
hs.append(h)
|
| 423 |
+
if i_level != self.num_resolutions-1:
|
| 424 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
| 425 |
+
|
| 426 |
+
# middle
|
| 427 |
+
h = hs[-1]
|
| 428 |
+
h = self.mid.block_1(h, temb)
|
| 429 |
+
h = self.mid.attn_1(h)
|
| 430 |
+
h = self.mid.block_2(h, temb)
|
| 431 |
+
|
| 432 |
+
# upsampling
|
| 433 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 434 |
+
for i_block in range(self.num_res_blocks+1):
|
| 435 |
+
h = self.up[i_level].block[i_block](
|
| 436 |
+
torch.cat([h, hs.pop()], dim=1), temb)
|
| 437 |
+
if len(self.up[i_level].attn) > 0:
|
| 438 |
+
h = self.up[i_level].attn[i_block](h)
|
| 439 |
+
if i_level != 0:
|
| 440 |
+
h = self.up[i_level].upsample(h)
|
| 441 |
+
|
| 442 |
+
# end
|
| 443 |
+
h = self.norm_out(h)
|
| 444 |
+
h = nonlinearity(h)
|
| 445 |
+
h = self.conv_out(h)
|
| 446 |
+
return h
|
| 447 |
+
|
| 448 |
+
def get_last_layer(self):
|
| 449 |
+
return self.conv_out.weight
|
| 450 |
+
|
| 451 |
+
|
| 452 |
+
class Encoder(nn.Module):
|
| 453 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
| 454 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
| 455 |
+
resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
|
| 456 |
+
**ignore_kwargs):
|
| 457 |
+
super().__init__()
|
| 458 |
+
if use_linear_attn: attn_type = "linear"
|
| 459 |
+
self.ch = ch
|
| 460 |
+
self.temb_ch = 0
|
| 461 |
+
self.num_resolutions = len(ch_mult)
|
| 462 |
+
self.resolution = resolution
|
| 463 |
+
self.in_channels = in_channels
|
| 464 |
+
if isinstance(num_res_blocks, int):
|
| 465 |
+
num_res_blocks = [num_res_blocks, ] * len(ch_mult)
|
| 466 |
+
else:
|
| 467 |
+
assert len(num_res_blocks) == len(ch_mult)
|
| 468 |
+
self.num_res_blocks = num_res_blocks
|
| 469 |
+
|
| 470 |
+
# downsampling
|
| 471 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
| 472 |
+
self.ch,
|
| 473 |
+
kernel_size=3,
|
| 474 |
+
stride=1,
|
| 475 |
+
padding=1)
|
| 476 |
+
|
| 477 |
+
curr_res = resolution
|
| 478 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
| 479 |
+
self.in_ch_mult = in_ch_mult
|
| 480 |
+
self.down = nn.ModuleList()
|
| 481 |
+
for i_level in range(self.num_resolutions):
|
| 482 |
+
block = nn.ModuleList()
|
| 483 |
+
attn = nn.ModuleList()
|
| 484 |
+
block_in = ch*in_ch_mult[i_level]
|
| 485 |
+
block_out = ch*ch_mult[i_level]
|
| 486 |
+
for i_block in range(self.num_res_blocks[i_level]):
|
| 487 |
+
block.append(ResnetBlock(in_channels=block_in,
|
| 488 |
+
out_channels=block_out,
|
| 489 |
+
temb_channels=self.temb_ch,
|
| 490 |
+
dropout=dropout))
|
| 491 |
+
block_in = block_out
|
| 492 |
+
if curr_res in attn_resolutions:
|
| 493 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
| 494 |
+
down = nn.Module()
|
| 495 |
+
down.block = block
|
| 496 |
+
down.attn = attn
|
| 497 |
+
if i_level != self.num_resolutions-1:
|
| 498 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
| 499 |
+
curr_res = curr_res // 2
|
| 500 |
+
self.down.append(down)
|
| 501 |
+
|
| 502 |
+
# middle
|
| 503 |
+
self.mid = nn.Module()
|
| 504 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
| 505 |
+
out_channels=block_in,
|
| 506 |
+
temb_channels=self.temb_ch,
|
| 507 |
+
dropout=dropout)
|
| 508 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
| 509 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
| 510 |
+
out_channels=block_in,
|
| 511 |
+
temb_channels=self.temb_ch,
|
| 512 |
+
dropout=dropout)
|
| 513 |
+
|
| 514 |
+
# end
|
| 515 |
+
self.norm_out = Normalize(block_in)
|
| 516 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
| 517 |
+
2*z_channels if double_z else z_channels,
|
| 518 |
+
kernel_size=3,
|
| 519 |
+
stride=1,
|
| 520 |
+
padding=1)
|
| 521 |
+
|
| 522 |
+
def forward(self, x):
|
| 523 |
+
# timestep embedding
|
| 524 |
+
temb = None
|
| 525 |
+
|
| 526 |
+
# downsampling
|
| 527 |
+
hs = [self.conv_in(x)]
|
| 528 |
+
for i_level in range(self.num_resolutions):
|
| 529 |
+
for i_block in range(self.num_res_blocks[i_level]):
|
| 530 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
| 531 |
+
if len(self.down[i_level].attn) > 0:
|
| 532 |
+
h = self.down[i_level].attn[i_block](h)
|
| 533 |
+
hs.append(h)
|
| 534 |
+
if i_level != self.num_resolutions-1:
|
| 535 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
| 536 |
+
|
| 537 |
+
# middle
|
| 538 |
+
h = hs[-1]
|
| 539 |
+
h = self.mid.block_1(h, temb)
|
| 540 |
+
h = self.mid.attn_1(h)
|
| 541 |
+
h = self.mid.block_2(h, temb)
|
| 542 |
+
|
| 543 |
+
# end
|
| 544 |
+
h = self.norm_out(h)
|
| 545 |
+
h = nonlinearity(h)
|
| 546 |
+
h = self.conv_out(h)
|
| 547 |
+
return h
|
| 548 |
+
|
| 549 |
+
|
| 550 |
+
class Decoder(nn.Module):
|
| 551 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
| 552 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
| 553 |
+
resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
|
| 554 |
+
attn_type="vanilla", **ignorekwargs):
|
| 555 |
+
super().__init__()
|
| 556 |
+
if use_linear_attn: attn_type = "linear"
|
| 557 |
+
self.ch = ch
|
| 558 |
+
self.temb_ch = 0
|
| 559 |
+
self.num_resolutions = len(ch_mult)
|
| 560 |
+
self.resolution = resolution
|
| 561 |
+
self.in_channels = in_channels
|
| 562 |
+
self.give_pre_end = give_pre_end
|
| 563 |
+
self.tanh_out = tanh_out
|
| 564 |
+
if isinstance(num_res_blocks, int):
|
| 565 |
+
num_res_blocks = [num_res_blocks, ] * len(ch_mult)
|
| 566 |
+
else:
|
| 567 |
+
assert len(num_res_blocks) == len(ch_mult)
|
| 568 |
+
self.num_res_blocks = num_res_blocks
|
| 569 |
+
|
| 570 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
| 571 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
| 572 |
+
block_in = ch*ch_mult[self.num_resolutions-1]
|
| 573 |
+
curr_res = resolution // 2**(self.num_resolutions-1)
|
| 574 |
+
self.z_shape = (1,z_channels,curr_res,curr_res)
|
| 575 |
+
print("Working with z of shape {} = {} dimensions.".format(
|
| 576 |
+
self.z_shape, np.prod(self.z_shape)))
|
| 577 |
+
|
| 578 |
+
# z to block_in
|
| 579 |
+
self.conv_in = torch.nn.Conv2d(z_channels,
|
| 580 |
+
block_in,
|
| 581 |
+
kernel_size=3,
|
| 582 |
+
stride=1,
|
| 583 |
+
padding=1)
|
| 584 |
+
|
| 585 |
+
# middle
|
| 586 |
+
self.mid = nn.Module()
|
| 587 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
| 588 |
+
out_channels=block_in,
|
| 589 |
+
temb_channels=self.temb_ch,
|
| 590 |
+
dropout=dropout)
|
| 591 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
| 592 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
| 593 |
+
out_channels=block_in,
|
| 594 |
+
temb_channels=self.temb_ch,
|
| 595 |
+
dropout=dropout)
|
| 596 |
+
|
| 597 |
+
# upsampling
|
| 598 |
+
self.up = nn.ModuleList()
|
| 599 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 600 |
+
block = nn.ModuleList()
|
| 601 |
+
attn = nn.ModuleList()
|
| 602 |
+
block_out = ch*ch_mult[i_level]
|
| 603 |
+
for i_block in range(self.num_res_blocks[i_level]+1):
|
| 604 |
+
block.append(ResnetBlock(in_channels=block_in,
|
| 605 |
+
out_channels=block_out,
|
| 606 |
+
temb_channels=self.temb_ch,
|
| 607 |
+
dropout=dropout))
|
| 608 |
+
block_in = block_out
|
| 609 |
+
if curr_res in attn_resolutions:
|
| 610 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
| 611 |
+
up = nn.Module()
|
| 612 |
+
up.block = block
|
| 613 |
+
up.attn = attn
|
| 614 |
+
if i_level != 0:
|
| 615 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
| 616 |
+
curr_res = curr_res * 2
|
| 617 |
+
self.up.insert(0, up) # prepend to get consistent order
|
| 618 |
+
|
| 619 |
+
# end
|
| 620 |
+
self.norm_out = Normalize(block_in)
|
| 621 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
| 622 |
+
out_ch,
|
| 623 |
+
kernel_size=3,
|
| 624 |
+
stride=1,
|
| 625 |
+
padding=1)
|
| 626 |
+
|
| 627 |
+
def forward(self, z):
|
| 628 |
+
#assert z.shape[1:] == self.z_shape[1:]
|
| 629 |
+
self.last_z_shape = z.shape
|
| 630 |
+
|
| 631 |
+
# timestep embedding
|
| 632 |
+
temb = None
|
| 633 |
+
|
| 634 |
+
# z to block_in
|
| 635 |
+
h = self.conv_in(z)
|
| 636 |
+
|
| 637 |
+
# middle
|
| 638 |
+
h = self.mid.block_1(h, temb)
|
| 639 |
+
h = self.mid.attn_1(h)
|
| 640 |
+
h = self.mid.block_2(h, temb)
|
| 641 |
+
|
| 642 |
+
# upsampling
|
| 643 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 644 |
+
for i_block in range(self.num_res_blocks[i_level]+1):
|
| 645 |
+
h = self.up[i_level].block[i_block](h, temb)
|
| 646 |
+
if len(self.up[i_level].attn) > 0:
|
| 647 |
+
h = self.up[i_level].attn[i_block](h)
|
| 648 |
+
if i_level != 0:
|
| 649 |
+
h = self.up[i_level].upsample(h)
|
| 650 |
+
|
| 651 |
+
# end
|
| 652 |
+
if self.give_pre_end:
|
| 653 |
+
return h
|
| 654 |
+
|
| 655 |
+
h = self.norm_out(h)
|
| 656 |
+
h = nonlinearity(h)
|
| 657 |
+
h = self.conv_out(h)
|
| 658 |
+
if self.tanh_out:
|
| 659 |
+
h = torch.tanh(h)
|
| 660 |
+
return h
|
| 661 |
+
|
| 662 |
+
|
| 663 |
+
class SimpleDecoder(nn.Module):
|
| 664 |
+
def __init__(self, in_channels, out_channels, *args, **kwargs):
|
| 665 |
+
super().__init__()
|
| 666 |
+
self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
|
| 667 |
+
ResnetBlock(in_channels=in_channels,
|
| 668 |
+
out_channels=2 * in_channels,
|
| 669 |
+
temb_channels=0, dropout=0.0),
|
| 670 |
+
ResnetBlock(in_channels=2 * in_channels,
|
| 671 |
+
out_channels=4 * in_channels,
|
| 672 |
+
temb_channels=0, dropout=0.0),
|
| 673 |
+
ResnetBlock(in_channels=4 * in_channels,
|
| 674 |
+
out_channels=2 * in_channels,
|
| 675 |
+
temb_channels=0, dropout=0.0),
|
| 676 |
+
nn.Conv2d(2*in_channels, in_channels, 1),
|
| 677 |
+
Upsample(in_channels, with_conv=True)])
|
| 678 |
+
# end
|
| 679 |
+
self.norm_out = Normalize(in_channels)
|
| 680 |
+
self.conv_out = torch.nn.Conv2d(in_channels,
|
| 681 |
+
out_channels,
|
| 682 |
+
kernel_size=3,
|
| 683 |
+
stride=1,
|
| 684 |
+
padding=1)
|
| 685 |
+
|
| 686 |
+
def forward(self, x):
|
| 687 |
+
for i, layer in enumerate(self.model):
|
| 688 |
+
if i in [1,2,3]:
|
| 689 |
+
x = layer(x, None)
|
| 690 |
+
else:
|
| 691 |
+
x = layer(x)
|
| 692 |
+
|
| 693 |
+
h = self.norm_out(x)
|
| 694 |
+
h = nonlinearity(h)
|
| 695 |
+
x = self.conv_out(h)
|
| 696 |
+
return x
|
| 697 |
+
|
| 698 |
+
|
| 699 |
+
class UpsampleDecoder(nn.Module):
|
| 700 |
+
def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
|
| 701 |
+
ch_mult=(2,2), dropout=0.0):
|
| 702 |
+
super().__init__()
|
| 703 |
+
# upsampling
|
| 704 |
+
self.temb_ch = 0
|
| 705 |
+
self.num_resolutions = len(ch_mult)
|
| 706 |
+
self.num_res_blocks = num_res_blocks
|
| 707 |
+
block_in = in_channels
|
| 708 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
| 709 |
+
self.res_blocks = nn.ModuleList()
|
| 710 |
+
self.upsample_blocks = nn.ModuleList()
|
| 711 |
+
for i_level in range(self.num_resolutions):
|
| 712 |
+
res_block = []
|
| 713 |
+
block_out = ch * ch_mult[i_level]
|
| 714 |
+
for i_block in range(self.num_res_blocks + 1):
|
| 715 |
+
res_block.append(ResnetBlock(in_channels=block_in,
|
| 716 |
+
out_channels=block_out,
|
| 717 |
+
temb_channels=self.temb_ch,
|
| 718 |
+
dropout=dropout))
|
| 719 |
+
block_in = block_out
|
| 720 |
+
self.res_blocks.append(nn.ModuleList(res_block))
|
| 721 |
+
if i_level != self.num_resolutions - 1:
|
| 722 |
+
self.upsample_blocks.append(Upsample(block_in, True))
|
| 723 |
+
curr_res = curr_res * 2
|
| 724 |
+
|
| 725 |
+
# end
|
| 726 |
+
self.norm_out = Normalize(block_in)
|
| 727 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
| 728 |
+
out_channels,
|
| 729 |
+
kernel_size=3,
|
| 730 |
+
stride=1,
|
| 731 |
+
padding=1)
|
| 732 |
+
|
| 733 |
+
def forward(self, x):
|
| 734 |
+
# upsampling
|
| 735 |
+
h = x
|
| 736 |
+
for k, i_level in enumerate(range(self.num_resolutions)):
|
| 737 |
+
for i_block in range(self.num_res_blocks + 1):
|
| 738 |
+
h = self.res_blocks[i_level][i_block](h, None)
|
| 739 |
+
if i_level != self.num_resolutions - 1:
|
| 740 |
+
h = self.upsample_blocks[k](h)
|
| 741 |
+
h = self.norm_out(h)
|
| 742 |
+
h = nonlinearity(h)
|
| 743 |
+
h = self.conv_out(h)
|
| 744 |
+
return h
|
| 745 |
+
|
| 746 |
+
|
| 747 |
+
class LatentRescaler(nn.Module):
|
| 748 |
+
def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
|
| 749 |
+
super().__init__()
|
| 750 |
+
# residual block, interpolate, residual block
|
| 751 |
+
self.factor = factor
|
| 752 |
+
self.conv_in = nn.Conv2d(in_channels,
|
| 753 |
+
mid_channels,
|
| 754 |
+
kernel_size=3,
|
| 755 |
+
stride=1,
|
| 756 |
+
padding=1)
|
| 757 |
+
self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
| 758 |
+
out_channels=mid_channels,
|
| 759 |
+
temb_channels=0,
|
| 760 |
+
dropout=0.0) for _ in range(depth)])
|
| 761 |
+
self.attn = AttnBlock(mid_channels)
|
| 762 |
+
self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
| 763 |
+
out_channels=mid_channels,
|
| 764 |
+
temb_channels=0,
|
| 765 |
+
dropout=0.0) for _ in range(depth)])
|
| 766 |
+
|
| 767 |
+
self.conv_out = nn.Conv2d(mid_channels,
|
| 768 |
+
out_channels,
|
| 769 |
+
kernel_size=1,
|
| 770 |
+
)
|
| 771 |
+
|
| 772 |
+
def forward(self, x):
|
| 773 |
+
x = self.conv_in(x)
|
| 774 |
+
for block in self.res_block1:
|
| 775 |
+
x = block(x, None)
|
| 776 |
+
x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
|
| 777 |
+
x = self.attn(x)
|
| 778 |
+
for block in self.res_block2:
|
| 779 |
+
x = block(x, None)
|
| 780 |
+
x = self.conv_out(x)
|
| 781 |
+
return x
|
| 782 |
+
|
| 783 |
+
|
| 784 |
+
class MergedRescaleEncoder(nn.Module):
|
| 785 |
+
def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
|
| 786 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True,
|
| 787 |
+
ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
|
| 788 |
+
super().__init__()
|
| 789 |
+
intermediate_chn = ch * ch_mult[-1]
|
| 790 |
+
self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
|
| 791 |
+
z_channels=intermediate_chn, double_z=False, resolution=resolution,
|
| 792 |
+
attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
|
| 793 |
+
out_ch=None)
|
| 794 |
+
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
|
| 795 |
+
mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
|
| 796 |
+
|
| 797 |
+
def forward(self, x):
|
| 798 |
+
x = self.encoder(x)
|
| 799 |
+
x = self.rescaler(x)
|
| 800 |
+
return x
|
| 801 |
+
|
| 802 |
+
|
| 803 |
+
class MergedRescaleDecoder(nn.Module):
|
| 804 |
+
def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
|
| 805 |
+
dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
|
| 806 |
+
super().__init__()
|
| 807 |
+
tmp_chn = z_channels*ch_mult[-1]
|
| 808 |
+
self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
|
| 809 |
+
resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
|
| 810 |
+
ch_mult=ch_mult, resolution=resolution, ch=ch)
|
| 811 |
+
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
|
| 812 |
+
out_channels=tmp_chn, depth=rescale_module_depth)
|
| 813 |
+
|
| 814 |
+
def forward(self, x):
|
| 815 |
+
x = self.rescaler(x)
|
| 816 |
+
x = self.decoder(x)
|
| 817 |
+
return x
|
| 818 |
+
|
| 819 |
+
|
| 820 |
+
class Upsampler(nn.Module):
|
| 821 |
+
def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
|
| 822 |
+
super().__init__()
|
| 823 |
+
assert out_size >= in_size
|
| 824 |
+
num_blocks = int(np.log2(out_size//in_size))+1
|
| 825 |
+
factor_up = 1.+ (out_size % in_size)
|
| 826 |
+
print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
|
| 827 |
+
self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
|
| 828 |
+
out_channels=in_channels)
|
| 829 |
+
self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
|
| 830 |
+
attn_resolutions=[], in_channels=None, ch=in_channels,
|
| 831 |
+
ch_mult=[ch_mult for _ in range(num_blocks)])
|
| 832 |
+
|
| 833 |
+
def forward(self, x):
|
| 834 |
+
x = self.rescaler(x)
|
| 835 |
+
x = self.decoder(x)
|
| 836 |
+
return x
|
| 837 |
+
|
| 838 |
+
|
| 839 |
+
class Resize(nn.Module):
|
| 840 |
+
def __init__(self, in_channels=None, learned=False, mode="bilinear"):
|
| 841 |
+
super().__init__()
|
| 842 |
+
self.with_conv = learned
|
| 843 |
+
self.mode = mode
|
| 844 |
+
if self.with_conv:
|
| 845 |
+
print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
|
| 846 |
+
raise NotImplementedError()
|
| 847 |
+
assert in_channels is not None
|
| 848 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
| 849 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
| 850 |
+
in_channels,
|
| 851 |
+
kernel_size=4,
|
| 852 |
+
stride=2,
|
| 853 |
+
padding=1)
|
| 854 |
+
|
| 855 |
+
def forward(self, x, scale_factor=1.0):
|
| 856 |
+
if scale_factor==1.0:
|
| 857 |
+
return x
|
| 858 |
+
else:
|
| 859 |
+
x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
|
| 860 |
+
return x
|
ldm/modules/diffusionmodules/model_back.py
ADDED
|
@@ -0,0 +1,815 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# pytorch_diffusion + derived encoder decoder
|
| 2 |
+
import math
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
def get_timestep_embedding(timesteps, embedding_dim):
|
| 8 |
+
"""
|
| 9 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
| 10 |
+
From Fairseq.
|
| 11 |
+
Build sinusoidal embeddings.
|
| 12 |
+
This matches the implementation in tensor2tensor, but differs slightly
|
| 13 |
+
from the description in Section 3.5 of "Attention Is All You Need".
|
| 14 |
+
"""
|
| 15 |
+
assert len(timesteps.shape) == 1
|
| 16 |
+
|
| 17 |
+
half_dim = embedding_dim // 2
|
| 18 |
+
emb = math.log(10000) / (half_dim - 1)
|
| 19 |
+
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
| 20 |
+
emb = emb.to(device=timesteps.device)
|
| 21 |
+
emb = timesteps.float()[:, None] * emb[None, :]
|
| 22 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
| 23 |
+
if embedding_dim % 2 == 1: # zero pad
|
| 24 |
+
emb = torch.nn.functional.pad(emb, (0,1,0,0))
|
| 25 |
+
return emb
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def nonlinearity(x):
|
| 29 |
+
# swish
|
| 30 |
+
return x*torch.sigmoid(x)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def Normalize(in_channels):
|
| 34 |
+
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class Upsample(nn.Module):
|
| 38 |
+
def __init__(self, in_channels, with_conv, padding_mode):
|
| 39 |
+
super().__init__()
|
| 40 |
+
self.with_conv = with_conv
|
| 41 |
+
if self.with_conv:
|
| 42 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
| 43 |
+
in_channels,
|
| 44 |
+
kernel_size=3,
|
| 45 |
+
stride=1,
|
| 46 |
+
padding=1,
|
| 47 |
+
padding_mode=padding_mode)
|
| 48 |
+
|
| 49 |
+
def forward(self, x):
|
| 50 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
| 51 |
+
if self.with_conv:
|
| 52 |
+
x = self.conv(x)
|
| 53 |
+
return x
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class Downsample(nn.Module):
|
| 57 |
+
def __init__(self, in_channels, with_conv):
|
| 58 |
+
super().__init__()
|
| 59 |
+
self.with_conv = with_conv
|
| 60 |
+
if self.with_conv:
|
| 61 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
| 62 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
| 63 |
+
in_channels,
|
| 64 |
+
kernel_size=3,
|
| 65 |
+
stride=2,
|
| 66 |
+
padding=0)
|
| 67 |
+
|
| 68 |
+
def forward(self, x):
|
| 69 |
+
if self.with_conv:
|
| 70 |
+
pad = (0,1,0,1)
|
| 71 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
| 72 |
+
x = self.conv(x)
|
| 73 |
+
else:
|
| 74 |
+
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
| 75 |
+
return x
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
class ResnetBlock(nn.Module):
|
| 79 |
+
def __init__(self, *, in_channels, padding_mode, out_channels=None, conv_shortcut=False,
|
| 80 |
+
dropout, temb_channels=512):
|
| 81 |
+
super().__init__()
|
| 82 |
+
self.in_channels = in_channels
|
| 83 |
+
out_channels = in_channels if out_channels is None else out_channels
|
| 84 |
+
self.out_channels = out_channels
|
| 85 |
+
self.use_conv_shortcut = conv_shortcut
|
| 86 |
+
|
| 87 |
+
self.norm1 = Normalize(in_channels)
|
| 88 |
+
self.conv1 = torch.nn.Conv2d(in_channels,
|
| 89 |
+
out_channels,
|
| 90 |
+
kernel_size=3,
|
| 91 |
+
stride=1,
|
| 92 |
+
padding=1,
|
| 93 |
+
padding_mode=padding_mode)
|
| 94 |
+
if temb_channels > 0:
|
| 95 |
+
self.temb_proj = torch.nn.Linear(temb_channels,
|
| 96 |
+
out_channels)
|
| 97 |
+
self.norm2 = Normalize(out_channels)
|
| 98 |
+
self.dropout = torch.nn.Dropout(dropout)
|
| 99 |
+
self.conv2 = torch.nn.Conv2d(out_channels,
|
| 100 |
+
out_channels,
|
| 101 |
+
kernel_size=3,
|
| 102 |
+
stride=1,
|
| 103 |
+
padding=1,
|
| 104 |
+
padding_mode=padding_mode)
|
| 105 |
+
if self.in_channels != self.out_channels:
|
| 106 |
+
if self.use_conv_shortcut:
|
| 107 |
+
self.conv_shortcut = torch.nn.Conv2d(in_channels,
|
| 108 |
+
out_channels,
|
| 109 |
+
kernel_size=3,
|
| 110 |
+
stride=1,
|
| 111 |
+
padding=1,
|
| 112 |
+
padding_mode=padding_mode)
|
| 113 |
+
else:
|
| 114 |
+
self.nin_shortcut = torch.nn.Conv2d(in_channels,
|
| 115 |
+
out_channels,
|
| 116 |
+
kernel_size=1,
|
| 117 |
+
stride=1,
|
| 118 |
+
padding=0)
|
| 119 |
+
|
| 120 |
+
def forward(self, x, temb):
|
| 121 |
+
h = x
|
| 122 |
+
h = self.norm1(h)
|
| 123 |
+
h = nonlinearity(h)
|
| 124 |
+
h = self.conv1(h)
|
| 125 |
+
|
| 126 |
+
if temb is not None:
|
| 127 |
+
h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
|
| 128 |
+
|
| 129 |
+
h = self.norm2(h)
|
| 130 |
+
h = nonlinearity(h)
|
| 131 |
+
h = self.dropout(h)
|
| 132 |
+
h = self.conv2(h)
|
| 133 |
+
|
| 134 |
+
if self.in_channels != self.out_channels:
|
| 135 |
+
if self.use_conv_shortcut:
|
| 136 |
+
x = self.conv_shortcut(x)
|
| 137 |
+
else:
|
| 138 |
+
x = self.nin_shortcut(x)
|
| 139 |
+
|
| 140 |
+
return x+h
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
class AttnBlock(nn.Module):
|
| 144 |
+
def __init__(self, in_channels):
|
| 145 |
+
super().__init__()
|
| 146 |
+
self.in_channels = in_channels
|
| 147 |
+
|
| 148 |
+
self.norm = Normalize(in_channels)
|
| 149 |
+
self.q = torch.nn.Conv2d(in_channels,
|
| 150 |
+
in_channels,
|
| 151 |
+
kernel_size=1,
|
| 152 |
+
stride=1,
|
| 153 |
+
padding=0)
|
| 154 |
+
self.k = torch.nn.Conv2d(in_channels,
|
| 155 |
+
in_channels,
|
| 156 |
+
kernel_size=1,
|
| 157 |
+
stride=1,
|
| 158 |
+
padding=0)
|
| 159 |
+
self.v = torch.nn.Conv2d(in_channels,
|
| 160 |
+
in_channels,
|
| 161 |
+
kernel_size=1,
|
| 162 |
+
stride=1,
|
| 163 |
+
padding=0)
|
| 164 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
| 165 |
+
in_channels,
|
| 166 |
+
kernel_size=1,
|
| 167 |
+
stride=1,
|
| 168 |
+
padding=0)
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
def forward(self, x):
|
| 172 |
+
h_ = x
|
| 173 |
+
h_ = self.norm(h_)
|
| 174 |
+
q = self.q(h_)
|
| 175 |
+
k = self.k(h_)
|
| 176 |
+
v = self.v(h_)
|
| 177 |
+
|
| 178 |
+
# compute attention
|
| 179 |
+
b,c,h,w = q.shape
|
| 180 |
+
q = q.reshape(b,c,h*w)
|
| 181 |
+
q = q.permute(0,2,1) # b,hw,c
|
| 182 |
+
k = k.reshape(b,c,h*w) # b,c,hw
|
| 183 |
+
w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
| 184 |
+
w_ = w_ * (int(c)**(-0.5))
|
| 185 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
| 186 |
+
|
| 187 |
+
# attend to values
|
| 188 |
+
v = v.reshape(b,c,h*w)
|
| 189 |
+
w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
|
| 190 |
+
h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
| 191 |
+
h_ = h_.reshape(b,c,h,w)
|
| 192 |
+
|
| 193 |
+
h_ = self.proj_out(h_)
|
| 194 |
+
|
| 195 |
+
return x+h_
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
class Model(nn.Module):
|
| 199 |
+
def __init__(self, *, ch, out_ch, padding_mode, ch_mult=(1,2,4,8), num_res_blocks,
|
| 200 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
| 201 |
+
resolution, use_timestep=True):
|
| 202 |
+
super().__init__()
|
| 203 |
+
self.ch = ch
|
| 204 |
+
self.temb_ch = self.ch*4
|
| 205 |
+
self.num_resolutions = len(ch_mult)
|
| 206 |
+
self.num_res_blocks = num_res_blocks
|
| 207 |
+
self.resolution = resolution
|
| 208 |
+
self.in_channels = in_channels
|
| 209 |
+
|
| 210 |
+
self.use_timestep = use_timestep
|
| 211 |
+
if self.use_timestep:
|
| 212 |
+
# timestep embedding
|
| 213 |
+
self.temb = nn.Module()
|
| 214 |
+
self.temb.dense = nn.ModuleList([
|
| 215 |
+
torch.nn.Linear(self.ch,
|
| 216 |
+
self.temb_ch),
|
| 217 |
+
torch.nn.Linear(self.temb_ch,
|
| 218 |
+
self.temb_ch),
|
| 219 |
+
])
|
| 220 |
+
|
| 221 |
+
# downsampling
|
| 222 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
| 223 |
+
self.ch,
|
| 224 |
+
kernel_size=3,
|
| 225 |
+
stride=1,
|
| 226 |
+
padding=1,
|
| 227 |
+
padding_mode=padding_mode)
|
| 228 |
+
|
| 229 |
+
curr_res = resolution
|
| 230 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
| 231 |
+
self.down = nn.ModuleList()
|
| 232 |
+
for i_level in range(self.num_resolutions):
|
| 233 |
+
block = nn.ModuleList()
|
| 234 |
+
attn = nn.ModuleList()
|
| 235 |
+
block_in = ch*in_ch_mult[i_level]
|
| 236 |
+
block_out = ch*ch_mult[i_level]
|
| 237 |
+
for i_block in range(self.num_res_blocks):
|
| 238 |
+
block.append(ResnetBlock(in_channels=block_in,
|
| 239 |
+
padding_mode=padding_mode,
|
| 240 |
+
out_channels=block_out,
|
| 241 |
+
temb_channels=self.temb_ch,
|
| 242 |
+
dropout=dropout))
|
| 243 |
+
block_in = block_out
|
| 244 |
+
if curr_res in attn_resolutions:
|
| 245 |
+
attn.append(AttnBlock(block_in))
|
| 246 |
+
down = nn.Module()
|
| 247 |
+
down.block = block
|
| 248 |
+
down.attn = attn
|
| 249 |
+
if i_level != self.num_resolutions-1:
|
| 250 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
| 251 |
+
curr_res = curr_res // 2
|
| 252 |
+
self.down.append(down)
|
| 253 |
+
|
| 254 |
+
# middle
|
| 255 |
+
self.mid = nn.Module()
|
| 256 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
| 257 |
+
padding_mode=padding_mode,
|
| 258 |
+
out_channels=block_in,
|
| 259 |
+
temb_channels=self.temb_ch,
|
| 260 |
+
dropout=dropout)
|
| 261 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
| 262 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
| 263 |
+
out_channels=block_in,
|
| 264 |
+
padding_mode=padding_mode,
|
| 265 |
+
temb_channels=self.temb_ch,
|
| 266 |
+
dropout=dropout)
|
| 267 |
+
|
| 268 |
+
# upsampling
|
| 269 |
+
self.up = nn.ModuleList()
|
| 270 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 271 |
+
block = nn.ModuleList()
|
| 272 |
+
attn = nn.ModuleList()
|
| 273 |
+
block_out = ch*ch_mult[i_level]
|
| 274 |
+
skip_in = ch*ch_mult[i_level]
|
| 275 |
+
for i_block in range(self.num_res_blocks+1):
|
| 276 |
+
if i_block == self.num_res_blocks:
|
| 277 |
+
skip_in = ch*in_ch_mult[i_level]
|
| 278 |
+
block.append(ResnetBlock(in_channels=block_in+skip_in,
|
| 279 |
+
padding_mode=padding_mode,
|
| 280 |
+
out_channels=block_out,
|
| 281 |
+
temb_channels=self.temb_ch,
|
| 282 |
+
dropout=dropout))
|
| 283 |
+
block_in = block_out
|
| 284 |
+
if curr_res in attn_resolutions:
|
| 285 |
+
attn.append(AttnBlock(block_in))
|
| 286 |
+
up = nn.Module()
|
| 287 |
+
up.block = block
|
| 288 |
+
up.attn = attn
|
| 289 |
+
if i_level != 0:
|
| 290 |
+
up.upsample = Upsample(block_in, resamp_with_conv, padding_mode)
|
| 291 |
+
curr_res = curr_res * 2
|
| 292 |
+
self.up.insert(0, up) # prepend to get consistent order
|
| 293 |
+
|
| 294 |
+
# end
|
| 295 |
+
self.norm_out = Normalize(block_in)
|
| 296 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
| 297 |
+
out_ch,
|
| 298 |
+
kernel_size=3,
|
| 299 |
+
stride=1,
|
| 300 |
+
padding=1,
|
| 301 |
+
padding_mode=padding_mode)
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
def forward(self, x, t=None):
|
| 305 |
+
#assert x.shape[2] == x.shape[3] == self.resolution
|
| 306 |
+
|
| 307 |
+
if self.use_timestep:
|
| 308 |
+
# timestep embedding
|
| 309 |
+
assert t is not None
|
| 310 |
+
temb = get_timestep_embedding(t, self.ch)
|
| 311 |
+
temb = self.temb.dense[0](temb)
|
| 312 |
+
temb = nonlinearity(temb)
|
| 313 |
+
temb = self.temb.dense[1](temb)
|
| 314 |
+
else:
|
| 315 |
+
temb = None
|
| 316 |
+
|
| 317 |
+
# downsampling
|
| 318 |
+
hs = [self.conv_in(x)]
|
| 319 |
+
for i_level in range(self.num_resolutions):
|
| 320 |
+
for i_block in range(self.num_res_blocks):
|
| 321 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
| 322 |
+
if len(self.down[i_level].attn) > 0:
|
| 323 |
+
h = self.down[i_level].attn[i_block](h)
|
| 324 |
+
hs.append(h)
|
| 325 |
+
if i_level != self.num_resolutions-1:
|
| 326 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
| 327 |
+
|
| 328 |
+
# middle
|
| 329 |
+
h = hs[-1]
|
| 330 |
+
h = self.mid.block_1(h, temb)
|
| 331 |
+
h = self.mid.attn_1(h)
|
| 332 |
+
h = self.mid.block_2(h, temb)
|
| 333 |
+
|
| 334 |
+
# upsampling
|
| 335 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 336 |
+
for i_block in range(self.num_res_blocks+1):
|
| 337 |
+
h = self.up[i_level].block[i_block](
|
| 338 |
+
torch.cat([h, hs.pop()], dim=1), temb)
|
| 339 |
+
if len(self.up[i_level].attn) > 0:
|
| 340 |
+
h = self.up[i_level].attn[i_block](h)
|
| 341 |
+
if i_level != 0:
|
| 342 |
+
h = self.up[i_level].upsample(h)
|
| 343 |
+
|
| 344 |
+
# end
|
| 345 |
+
h = self.norm_out(h)
|
| 346 |
+
h = nonlinearity(h)
|
| 347 |
+
h = self.conv_out(h)
|
| 348 |
+
return h
|
| 349 |
+
|
| 350 |
+
|
| 351 |
+
class Encoder(nn.Module):
|
| 352 |
+
def __init__(self, *, ch, out_ch, padding_mode='zeros', ch_mult=(1,2,4,8), num_res_blocks,
|
| 353 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
| 354 |
+
resolution, z_channels, double_z=True, **ignore_kwargs):
|
| 355 |
+
super().__init__()
|
| 356 |
+
self.ch = ch
|
| 357 |
+
self.temb_ch = 0
|
| 358 |
+
self.num_resolutions = len(ch_mult)
|
| 359 |
+
self.resolution = resolution
|
| 360 |
+
self.in_channels = in_channels
|
| 361 |
+
if isinstance(num_res_blocks, int):
|
| 362 |
+
num_res_blocks = [num_res_blocks, ] * len(ch_mult)
|
| 363 |
+
else:
|
| 364 |
+
assert len(num_res_blocks) == len(ch_mult)
|
| 365 |
+
self.num_res_blocks = num_res_blocks
|
| 366 |
+
|
| 367 |
+
# downsampling
|
| 368 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
| 369 |
+
self.ch,
|
| 370 |
+
kernel_size=3,
|
| 371 |
+
stride=1,
|
| 372 |
+
padding=1,
|
| 373 |
+
padding_mode=padding_mode)
|
| 374 |
+
|
| 375 |
+
curr_res = resolution
|
| 376 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
| 377 |
+
self.down = nn.ModuleList()
|
| 378 |
+
for i_level in range(self.num_resolutions):
|
| 379 |
+
block = nn.ModuleList()
|
| 380 |
+
attn = nn.ModuleList()
|
| 381 |
+
block_in = ch*in_ch_mult[i_level]
|
| 382 |
+
block_out = ch*ch_mult[i_level]
|
| 383 |
+
for i_block in range(self.num_res_blocks[i_level]):
|
| 384 |
+
block.append(ResnetBlock(in_channels=block_in,
|
| 385 |
+
padding_mode=padding_mode,
|
| 386 |
+
out_channels=block_out,
|
| 387 |
+
temb_channels=self.temb_ch,
|
| 388 |
+
dropout=dropout))
|
| 389 |
+
block_in = block_out
|
| 390 |
+
if curr_res in attn_resolutions:
|
| 391 |
+
attn.append(AttnBlock(block_in))
|
| 392 |
+
down = nn.Module()
|
| 393 |
+
down.block = block
|
| 394 |
+
down.attn = attn
|
| 395 |
+
if i_level != self.num_resolutions-1:
|
| 396 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
| 397 |
+
curr_res = curr_res // 2
|
| 398 |
+
self.down.append(down)
|
| 399 |
+
|
| 400 |
+
# middle
|
| 401 |
+
self.mid = nn.Module()
|
| 402 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
| 403 |
+
padding_mode=padding_mode,
|
| 404 |
+
out_channels=block_in,
|
| 405 |
+
temb_channels=self.temb_ch,
|
| 406 |
+
dropout=dropout)
|
| 407 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
| 408 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
| 409 |
+
padding_mode=padding_mode,
|
| 410 |
+
out_channels=block_in,
|
| 411 |
+
temb_channels=self.temb_ch,
|
| 412 |
+
dropout=dropout)
|
| 413 |
+
|
| 414 |
+
# end
|
| 415 |
+
self.norm_out = Normalize(block_in)
|
| 416 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
| 417 |
+
2*z_channels if double_z else z_channels,
|
| 418 |
+
kernel_size=3,
|
| 419 |
+
stride=1,
|
| 420 |
+
padding=1,
|
| 421 |
+
padding_mode=padding_mode)
|
| 422 |
+
|
| 423 |
+
|
| 424 |
+
def forward(self, x):
|
| 425 |
+
#assert x.shape[2] == x.shape[3] == self.resolution, "{}, {}, {}".format(x.shape[2], x.shape[3], self.resolution)
|
| 426 |
+
|
| 427 |
+
# timestep embedding
|
| 428 |
+
temb = None
|
| 429 |
+
|
| 430 |
+
# downsampling
|
| 431 |
+
hs = [self.conv_in(x)]
|
| 432 |
+
for i_level in range(self.num_resolutions):
|
| 433 |
+
for i_block in range(self.num_res_blocks[i_level]):
|
| 434 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
| 435 |
+
if len(self.down[i_level].attn) > 0:
|
| 436 |
+
h = self.down[i_level].attn[i_block](h)
|
| 437 |
+
hs.append(h)
|
| 438 |
+
if i_level != self.num_resolutions-1:
|
| 439 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
| 440 |
+
|
| 441 |
+
# middle
|
| 442 |
+
h = hs[-1]
|
| 443 |
+
h = self.mid.block_1(h, temb)
|
| 444 |
+
h = self.mid.attn_1(h)
|
| 445 |
+
h = self.mid.block_2(h, temb)
|
| 446 |
+
|
| 447 |
+
# end
|
| 448 |
+
h = self.norm_out(h)
|
| 449 |
+
h = nonlinearity(h)
|
| 450 |
+
h = self.conv_out(h)
|
| 451 |
+
return h
|
| 452 |
+
|
| 453 |
+
|
| 454 |
+
class Decoder(nn.Module):
|
| 455 |
+
def __init__(self, *, ch, out_ch, padding_mode='zeros', ch_mult=(1,2,4,8), num_res_blocks,
|
| 456 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
| 457 |
+
resolution, z_channels, give_pre_end=False, **ignorekwargs):
|
| 458 |
+
super().__init__()
|
| 459 |
+
self.ch = ch
|
| 460 |
+
self.temb_ch = 0
|
| 461 |
+
self.num_resolutions = len(ch_mult)
|
| 462 |
+
self.resolution = resolution
|
| 463 |
+
self.in_channels = in_channels
|
| 464 |
+
self.give_pre_end = give_pre_end
|
| 465 |
+
if isinstance(num_res_blocks, int):
|
| 466 |
+
num_res_blocks = [num_res_blocks, ] * len(ch_mult)
|
| 467 |
+
else:
|
| 468 |
+
assert len(num_res_blocks) == len(ch_mult)
|
| 469 |
+
self.num_res_blocks = num_res_blocks
|
| 470 |
+
|
| 471 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
| 472 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
| 473 |
+
block_in = ch*ch_mult[self.num_resolutions-1]
|
| 474 |
+
curr_res = resolution // 2**(self.num_resolutions-1)
|
| 475 |
+
self.z_shape = (1,z_channels,curr_res,curr_res)
|
| 476 |
+
print("Working with z of shape {} = {} dimensions.".format(
|
| 477 |
+
self.z_shape, np.prod(self.z_shape)))
|
| 478 |
+
|
| 479 |
+
# z to block_in
|
| 480 |
+
self.conv_in = torch.nn.Conv2d(z_channels,
|
| 481 |
+
block_in,
|
| 482 |
+
kernel_size=3,
|
| 483 |
+
stride=1,
|
| 484 |
+
padding=1,
|
| 485 |
+
padding_mode=padding_mode)
|
| 486 |
+
|
| 487 |
+
# middle
|
| 488 |
+
self.mid = nn.Module()
|
| 489 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
| 490 |
+
padding_mode=padding_mode,
|
| 491 |
+
out_channels=block_in,
|
| 492 |
+
temb_channels=self.temb_ch,
|
| 493 |
+
dropout=dropout)
|
| 494 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
| 495 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
| 496 |
+
padding_mode=padding_mode,
|
| 497 |
+
out_channels=block_in,
|
| 498 |
+
temb_channels=self.temb_ch,
|
| 499 |
+
dropout=dropout)
|
| 500 |
+
|
| 501 |
+
# upsampling
|
| 502 |
+
self.up = nn.ModuleList()
|
| 503 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 504 |
+
block = nn.ModuleList()
|
| 505 |
+
attn = nn.ModuleList()
|
| 506 |
+
block_out = ch*ch_mult[i_level]
|
| 507 |
+
for i_block in range(self.num_res_blocks[i_level]+1):
|
| 508 |
+
block.append(ResnetBlock(in_channels=block_in,
|
| 509 |
+
padding_mode=padding_mode,
|
| 510 |
+
out_channels=block_out,
|
| 511 |
+
temb_channels=self.temb_ch,
|
| 512 |
+
dropout=dropout))
|
| 513 |
+
block_in = block_out
|
| 514 |
+
if curr_res in attn_resolutions:
|
| 515 |
+
attn.append(AttnBlock(block_in))
|
| 516 |
+
up = nn.Module()
|
| 517 |
+
up.block = block
|
| 518 |
+
up.attn = attn
|
| 519 |
+
if i_level != 0:
|
| 520 |
+
up.upsample = Upsample(block_in, resamp_with_conv, padding_mode)
|
| 521 |
+
curr_res = curr_res * 2
|
| 522 |
+
self.up.insert(0, up) # prepend to get consistent order
|
| 523 |
+
|
| 524 |
+
# end
|
| 525 |
+
self.norm_out = Normalize(block_in)
|
| 526 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
| 527 |
+
out_ch,
|
| 528 |
+
kernel_size=3,
|
| 529 |
+
stride=1,
|
| 530 |
+
padding=1,
|
| 531 |
+
padding_mode=padding_mode)
|
| 532 |
+
|
| 533 |
+
def forward(self, z):
|
| 534 |
+
#assert z.shape[1:] == self.z_shape[1:]
|
| 535 |
+
self.last_z_shape = z.shape
|
| 536 |
+
|
| 537 |
+
# timestep embedding
|
| 538 |
+
temb = None
|
| 539 |
+
|
| 540 |
+
# z to block_in
|
| 541 |
+
h = self.conv_in(z)
|
| 542 |
+
|
| 543 |
+
# middle
|
| 544 |
+
h = self.mid.block_1(h, temb)
|
| 545 |
+
h = self.mid.attn_1(h)
|
| 546 |
+
h = self.mid.block_2(h, temb)
|
| 547 |
+
|
| 548 |
+
# upsampling
|
| 549 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 550 |
+
for i_block in range(self.num_res_blocks[i_level]+1):
|
| 551 |
+
h = self.up[i_level].block[i_block](h, temb)
|
| 552 |
+
if len(self.up[i_level].attn) > 0:
|
| 553 |
+
h = self.up[i_level].attn[i_block](h)
|
| 554 |
+
if i_level != 0:
|
| 555 |
+
h = self.up[i_level].upsample(h)
|
| 556 |
+
|
| 557 |
+
# end
|
| 558 |
+
if self.give_pre_end:
|
| 559 |
+
return h
|
| 560 |
+
|
| 561 |
+
h = self.norm_out(h)
|
| 562 |
+
h = nonlinearity(h)
|
| 563 |
+
h = self.conv_out(h)
|
| 564 |
+
return h
|
| 565 |
+
|
| 566 |
+
|
| 567 |
+
class VUNet(nn.Module):
|
| 568 |
+
def __init__(self, *, ch, out_ch, padding_mode, ch_mult=(1,2,4,8), num_res_blocks,
|
| 569 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True,
|
| 570 |
+
in_channels, c_channels,
|
| 571 |
+
resolution, z_channels, use_timestep=False, **ignore_kwargs):
|
| 572 |
+
super().__init__()
|
| 573 |
+
self.ch = ch
|
| 574 |
+
self.temb_ch = self.ch*4
|
| 575 |
+
self.num_resolutions = len(ch_mult)
|
| 576 |
+
self.num_res_blocks = num_res_blocks
|
| 577 |
+
self.resolution = resolution
|
| 578 |
+
|
| 579 |
+
self.use_timestep = use_timestep
|
| 580 |
+
if self.use_timestep:
|
| 581 |
+
# timestep embedding
|
| 582 |
+
self.temb = nn.Module()
|
| 583 |
+
self.temb.dense = nn.ModuleList([
|
| 584 |
+
torch.nn.Linear(self.ch,
|
| 585 |
+
self.temb_ch),
|
| 586 |
+
torch.nn.Linear(self.temb_ch,
|
| 587 |
+
self.temb_ch),
|
| 588 |
+
])
|
| 589 |
+
|
| 590 |
+
# downsampling
|
| 591 |
+
self.conv_in = torch.nn.Conv2d(c_channels,
|
| 592 |
+
self.ch,
|
| 593 |
+
kernel_size=3,
|
| 594 |
+
stride=1,
|
| 595 |
+
padding=1,
|
| 596 |
+
padding_mode=padding_mode)
|
| 597 |
+
|
| 598 |
+
curr_res = resolution
|
| 599 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
| 600 |
+
self.down = nn.ModuleList()
|
| 601 |
+
for i_level in range(self.num_resolutions):
|
| 602 |
+
block = nn.ModuleList()
|
| 603 |
+
attn = nn.ModuleList()
|
| 604 |
+
block_in = ch*in_ch_mult[i_level]
|
| 605 |
+
block_out = ch*ch_mult[i_level]
|
| 606 |
+
for i_block in range(self.num_res_blocks):
|
| 607 |
+
block.append(ResnetBlock(in_channels=block_in,
|
| 608 |
+
out_channels=block_out,
|
| 609 |
+
padding_mode=padding_mode,
|
| 610 |
+
temb_channels=self.temb_ch,
|
| 611 |
+
dropout=dropout))
|
| 612 |
+
block_in = block_out
|
| 613 |
+
if curr_res in attn_resolutions:
|
| 614 |
+
attn.append(AttnBlock(block_in))
|
| 615 |
+
down = nn.Module()
|
| 616 |
+
down.block = block
|
| 617 |
+
down.attn = attn
|
| 618 |
+
if i_level != self.num_resolutions-1:
|
| 619 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
| 620 |
+
curr_res = curr_res // 2
|
| 621 |
+
self.down.append(down)
|
| 622 |
+
|
| 623 |
+
self.z_in = torch.nn.Conv2d(z_channels,
|
| 624 |
+
block_in,
|
| 625 |
+
kernel_size=1,
|
| 626 |
+
stride=1,
|
| 627 |
+
padding=0)
|
| 628 |
+
# middle
|
| 629 |
+
self.mid = nn.Module()
|
| 630 |
+
self.mid.block_1 = ResnetBlock(in_channels=2*block_in,
|
| 631 |
+
out_channels=block_in,
|
| 632 |
+
padding_mode=padding_mode,
|
| 633 |
+
temb_channels=self.temb_ch,
|
| 634 |
+
dropout=dropout)
|
| 635 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
| 636 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
| 637 |
+
out_channels=block_in,
|
| 638 |
+
padding_mode=padding_mode,
|
| 639 |
+
temb_channels=self.temb_ch,
|
| 640 |
+
dropout=dropout)
|
| 641 |
+
|
| 642 |
+
# upsampling
|
| 643 |
+
self.up = nn.ModuleList()
|
| 644 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 645 |
+
block = nn.ModuleList()
|
| 646 |
+
attn = nn.ModuleList()
|
| 647 |
+
block_out = ch*ch_mult[i_level]
|
| 648 |
+
skip_in = ch*ch_mult[i_level]
|
| 649 |
+
for i_block in range(self.num_res_blocks+1):
|
| 650 |
+
if i_block == self.num_res_blocks:
|
| 651 |
+
skip_in = ch*in_ch_mult[i_level]
|
| 652 |
+
block.append(ResnetBlock(in_channels=block_in+skip_in,
|
| 653 |
+
out_channels=block_out,
|
| 654 |
+
padding_mode=padding_mode,
|
| 655 |
+
temb_channels=self.temb_ch,
|
| 656 |
+
dropout=dropout))
|
| 657 |
+
block_in = block_out
|
| 658 |
+
if curr_res in attn_resolutions:
|
| 659 |
+
attn.append(AttnBlock(block_in))
|
| 660 |
+
up = nn.Module()
|
| 661 |
+
up.block = block
|
| 662 |
+
up.attn = attn
|
| 663 |
+
if i_level != 0:
|
| 664 |
+
up.upsample = Upsample(block_in, resamp_with_conv, padding_mode)
|
| 665 |
+
curr_res = curr_res * 2
|
| 666 |
+
self.up.insert(0, up) # prepend to get consistent order
|
| 667 |
+
|
| 668 |
+
# end
|
| 669 |
+
self.norm_out = Normalize(block_in)
|
| 670 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
| 671 |
+
out_ch,
|
| 672 |
+
kernel_size=3,
|
| 673 |
+
stride=1,
|
| 674 |
+
padding=1,
|
| 675 |
+
padding_mode=padding_mode)
|
| 676 |
+
|
| 677 |
+
|
| 678 |
+
def forward(self, x, z):
|
| 679 |
+
#assert x.shape[2] == x.shape[3] == self.resolution
|
| 680 |
+
|
| 681 |
+
if self.use_timestep:
|
| 682 |
+
# timestep embedding
|
| 683 |
+
assert t is not None
|
| 684 |
+
temb = get_timestep_embedding(t, self.ch)
|
| 685 |
+
temb = self.temb.dense[0](temb)
|
| 686 |
+
temb = nonlinearity(temb)
|
| 687 |
+
temb = self.temb.dense[1](temb)
|
| 688 |
+
else:
|
| 689 |
+
temb = None
|
| 690 |
+
|
| 691 |
+
# downsampling
|
| 692 |
+
hs = [self.conv_in(x)]
|
| 693 |
+
for i_level in range(self.num_resolutions):
|
| 694 |
+
for i_block in range(self.num_res_blocks):
|
| 695 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
| 696 |
+
if len(self.down[i_level].attn) > 0:
|
| 697 |
+
h = self.down[i_level].attn[i_block](h)
|
| 698 |
+
hs.append(h)
|
| 699 |
+
if i_level != self.num_resolutions-1:
|
| 700 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
| 701 |
+
|
| 702 |
+
# middle
|
| 703 |
+
h = hs[-1]
|
| 704 |
+
z = self.z_in(z)
|
| 705 |
+
h = torch.cat((h,z),dim=1)
|
| 706 |
+
h = self.mid.block_1(h, temb)
|
| 707 |
+
h = self.mid.attn_1(h)
|
| 708 |
+
h = self.mid.block_2(h, temb)
|
| 709 |
+
|
| 710 |
+
# upsampling
|
| 711 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 712 |
+
for i_block in range(self.num_res_blocks+1):
|
| 713 |
+
h = self.up[i_level].block[i_block](
|
| 714 |
+
torch.cat([h, hs.pop()], dim=1), temb)
|
| 715 |
+
if len(self.up[i_level].attn) > 0:
|
| 716 |
+
h = self.up[i_level].attn[i_block](h)
|
| 717 |
+
if i_level != 0:
|
| 718 |
+
h = self.up[i_level].upsample(h)
|
| 719 |
+
|
| 720 |
+
# end
|
| 721 |
+
h = self.norm_out(h)
|
| 722 |
+
h = nonlinearity(h)
|
| 723 |
+
h = self.conv_out(h)
|
| 724 |
+
return h
|
| 725 |
+
|
| 726 |
+
|
| 727 |
+
class SimpleDecoder(nn.Module):
|
| 728 |
+
def __init__(self, in_channels, out_channels, padding_mode, *args, **kwargs):
|
| 729 |
+
super().__init__()
|
| 730 |
+
self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
|
| 731 |
+
ResnetBlock(in_channels=in_channels,
|
| 732 |
+
padding_mode=padding_mode,
|
| 733 |
+
out_channels=2 * in_channels,
|
| 734 |
+
temb_channels=0, dropout=0.0),
|
| 735 |
+
ResnetBlock(in_channels=2 * in_channels,
|
| 736 |
+
padding_mode=padding_mode,
|
| 737 |
+
out_channels=4 * in_channels,
|
| 738 |
+
temb_channels=0, dropout=0.0),
|
| 739 |
+
ResnetBlock(in_channels=4 * in_channels,
|
| 740 |
+
padding_mode=padding_mode,
|
| 741 |
+
out_channels=2 * in_channels,
|
| 742 |
+
temb_channels=0, dropout=0.0),
|
| 743 |
+
nn.Conv2d(2*in_channels, in_channels, 1),
|
| 744 |
+
Upsample(in_channels, with_conv=True, padding_mode=padding_mode)])
|
| 745 |
+
# end
|
| 746 |
+
self.norm_out = Normalize(in_channels)
|
| 747 |
+
self.conv_out = torch.nn.Conv2d(in_channels,
|
| 748 |
+
out_channels,
|
| 749 |
+
kernel_size=3,
|
| 750 |
+
stride=1,
|
| 751 |
+
padding=1,
|
| 752 |
+
padding_mode=padding_mode)
|
| 753 |
+
|
| 754 |
+
def forward(self, x):
|
| 755 |
+
for i, layer in enumerate(self.model):
|
| 756 |
+
if i in [1,2,3]:
|
| 757 |
+
x = layer(x, None)
|
| 758 |
+
else:
|
| 759 |
+
x = layer(x)
|
| 760 |
+
|
| 761 |
+
h = self.norm_out(x)
|
| 762 |
+
h = nonlinearity(h)
|
| 763 |
+
x = self.conv_out(h)
|
| 764 |
+
return x
|
| 765 |
+
|
| 766 |
+
|
| 767 |
+
class UpsampleDecoder(nn.Module):
|
| 768 |
+
def __init__(self, in_channels, out_channels, padding_mode, ch, num_res_blocks, resolution,
|
| 769 |
+
ch_mult=(2,2), dropout=0.0):
|
| 770 |
+
super().__init__()
|
| 771 |
+
# upsampling
|
| 772 |
+
self.temb_ch = 0
|
| 773 |
+
self.num_resolutions = len(ch_mult)
|
| 774 |
+
self.num_res_blocks = num_res_blocks
|
| 775 |
+
block_in = in_channels
|
| 776 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
| 777 |
+
self.res_blocks = nn.ModuleList()
|
| 778 |
+
self.upsample_blocks = nn.ModuleList()
|
| 779 |
+
for i_level in range(self.num_resolutions):
|
| 780 |
+
res_block = []
|
| 781 |
+
block_out = ch * ch_mult[i_level]
|
| 782 |
+
for i_block in range(self.num_res_blocks + 1):
|
| 783 |
+
res_block.append(ResnetBlock(in_channels=block_in,
|
| 784 |
+
out_channels=block_out,
|
| 785 |
+
padding_mode=padding_mode,
|
| 786 |
+
temb_channels=self.temb_ch,
|
| 787 |
+
dropout=dropout))
|
| 788 |
+
block_in = block_out
|
| 789 |
+
self.res_blocks.append(nn.ModuleList(res_block))
|
| 790 |
+
if i_level != self.num_resolutions - 1:
|
| 791 |
+
self.upsample_blocks.append(Upsample(block_in, True, padding_mode))
|
| 792 |
+
curr_res = curr_res * 2
|
| 793 |
+
|
| 794 |
+
# end
|
| 795 |
+
self.norm_out = Normalize(block_in)
|
| 796 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
| 797 |
+
out_channels,
|
| 798 |
+
kernel_size=3,
|
| 799 |
+
stride=1,
|
| 800 |
+
padding=1,
|
| 801 |
+
padding_mode=padding_mode)
|
| 802 |
+
|
| 803 |
+
def forward(self, x):
|
| 804 |
+
# upsampling
|
| 805 |
+
h = x
|
| 806 |
+
for k, i_level in enumerate(range(self.num_resolutions)):
|
| 807 |
+
for i_block in range(self.num_res_blocks + 1):
|
| 808 |
+
h = self.res_blocks[i_level][i_block](h, None)
|
| 809 |
+
if i_level != self.num_resolutions - 1:
|
| 810 |
+
h = self.upsample_blocks[k](h)
|
| 811 |
+
h = self.norm_out(h)
|
| 812 |
+
h = nonlinearity(h)
|
| 813 |
+
h = self.conv_out(h)
|
| 814 |
+
return h
|
| 815 |
+
|
ldm/modules/diffusionmodules/openaimodel.py
ADDED
|
@@ -0,0 +1,788 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from abc import abstractmethod
|
| 2 |
+
import math
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch as th
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
|
| 9 |
+
from ldm.modules.diffusionmodules.util import (
|
| 10 |
+
checkpoint,
|
| 11 |
+
conv_nd,
|
| 12 |
+
linear,
|
| 13 |
+
avg_pool_nd,
|
| 14 |
+
zero_module,
|
| 15 |
+
normalization,
|
| 16 |
+
timestep_embedding,
|
| 17 |
+
)
|
| 18 |
+
from ldm.modules.attention import SpatialTransformer
|
| 19 |
+
from ldm.util import exists
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
# dummy replace
|
| 23 |
+
def convert_module_to_f16(x):
|
| 24 |
+
pass
|
| 25 |
+
|
| 26 |
+
def convert_module_to_f32(x):
|
| 27 |
+
pass
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
## go
|
| 31 |
+
class AttentionPool2d(nn.Module):
|
| 32 |
+
"""
|
| 33 |
+
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
|
| 34 |
+
"""
|
| 35 |
+
|
| 36 |
+
def __init__(
|
| 37 |
+
self,
|
| 38 |
+
spacial_dim: int,
|
| 39 |
+
embed_dim: int,
|
| 40 |
+
num_heads_channels: int,
|
| 41 |
+
output_dim: int = None,
|
| 42 |
+
):
|
| 43 |
+
super().__init__()
|
| 44 |
+
self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
|
| 45 |
+
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
| 46 |
+
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
| 47 |
+
self.num_heads = embed_dim // num_heads_channels
|
| 48 |
+
self.attention = QKVAttention(self.num_heads)
|
| 49 |
+
|
| 50 |
+
def forward(self, x):
|
| 51 |
+
b, c, *_spatial = x.shape
|
| 52 |
+
x = x.reshape(b, c, -1) # NC(HW)
|
| 53 |
+
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
|
| 54 |
+
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
|
| 55 |
+
x = self.qkv_proj(x)
|
| 56 |
+
x = self.attention(x)
|
| 57 |
+
x = self.c_proj(x)
|
| 58 |
+
return x[:, :, 0]
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
class TimestepBlock(nn.Module):
|
| 62 |
+
"""
|
| 63 |
+
Any module where forward() takes timestep embeddings as a second argument.
|
| 64 |
+
"""
|
| 65 |
+
|
| 66 |
+
@abstractmethod
|
| 67 |
+
def forward(self, x, emb):
|
| 68 |
+
"""
|
| 69 |
+
Apply the module to `x` given `emb` timestep embeddings.
|
| 70 |
+
"""
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
| 74 |
+
"""
|
| 75 |
+
A sequential module that passes timestep embeddings to the children that
|
| 76 |
+
support it as an extra input.
|
| 77 |
+
"""
|
| 78 |
+
|
| 79 |
+
def forward(self, x, emb, context=None):
|
| 80 |
+
for layer in self:
|
| 81 |
+
if isinstance(layer, TimestepBlock):
|
| 82 |
+
x = layer(x, emb)
|
| 83 |
+
elif isinstance(layer, SpatialTransformer):
|
| 84 |
+
x = layer(x, context)
|
| 85 |
+
else:
|
| 86 |
+
x = layer(x)
|
| 87 |
+
return x
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
class Upsample(nn.Module):
|
| 91 |
+
"""
|
| 92 |
+
An upsampling layer with an optional convolution.
|
| 93 |
+
:param channels: channels in the inputs and outputs.
|
| 94 |
+
:param use_conv: a bool determining if a convolution is applied.
|
| 95 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
| 96 |
+
upsampling occurs in the inner-two dimensions.
|
| 97 |
+
"""
|
| 98 |
+
|
| 99 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
| 100 |
+
super().__init__()
|
| 101 |
+
self.channels = channels
|
| 102 |
+
self.out_channels = out_channels or channels
|
| 103 |
+
self.use_conv = use_conv
|
| 104 |
+
self.dims = dims
|
| 105 |
+
if use_conv:
|
| 106 |
+
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
|
| 107 |
+
|
| 108 |
+
def forward(self, x):
|
| 109 |
+
assert x.shape[1] == self.channels
|
| 110 |
+
if self.dims == 3:
|
| 111 |
+
x = F.interpolate(
|
| 112 |
+
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
| 113 |
+
)
|
| 114 |
+
else:
|
| 115 |
+
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
| 116 |
+
if self.use_conv:
|
| 117 |
+
x = self.conv(x)
|
| 118 |
+
return x
|
| 119 |
+
|
| 120 |
+
class TransposedUpsample(nn.Module):
|
| 121 |
+
'Learned 2x upsampling without padding'
|
| 122 |
+
def __init__(self, channels, out_channels=None, ks=5):
|
| 123 |
+
super().__init__()
|
| 124 |
+
self.channels = channels
|
| 125 |
+
self.out_channels = out_channels or channels
|
| 126 |
+
|
| 127 |
+
self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
|
| 128 |
+
|
| 129 |
+
def forward(self,x):
|
| 130 |
+
return self.up(x)
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
class Downsample(nn.Module):
|
| 134 |
+
"""
|
| 135 |
+
A downsampling layer with an optional convolution.
|
| 136 |
+
:param channels: channels in the inputs and outputs.
|
| 137 |
+
:param use_conv: a bool determining if a convolution is applied.
|
| 138 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
| 139 |
+
downsampling occurs in the inner-two dimensions.
|
| 140 |
+
"""
|
| 141 |
+
|
| 142 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
|
| 143 |
+
super().__init__()
|
| 144 |
+
self.channels = channels
|
| 145 |
+
self.out_channels = out_channels or channels
|
| 146 |
+
self.use_conv = use_conv
|
| 147 |
+
self.dims = dims
|
| 148 |
+
stride = 2 if dims != 3 else (1, 2, 2)
|
| 149 |
+
if use_conv:
|
| 150 |
+
self.op = conv_nd(
|
| 151 |
+
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
|
| 152 |
+
)
|
| 153 |
+
else:
|
| 154 |
+
assert self.channels == self.out_channels
|
| 155 |
+
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
| 156 |
+
|
| 157 |
+
def forward(self, x):
|
| 158 |
+
assert x.shape[1] == self.channels
|
| 159 |
+
return self.op(x)
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
class ResBlock(TimestepBlock):
|
| 163 |
+
"""
|
| 164 |
+
A residual block that can optionally change the number of channels.
|
| 165 |
+
:param channels: the number of input channels.
|
| 166 |
+
:param emb_channels: the number of timestep embedding channels.
|
| 167 |
+
:param dropout: the rate of dropout.
|
| 168 |
+
:param out_channels: if specified, the number of out channels.
|
| 169 |
+
:param use_conv: if True and out_channels is specified, use a spatial
|
| 170 |
+
convolution instead of a smaller 1x1 convolution to change the
|
| 171 |
+
channels in the skip connection.
|
| 172 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
| 173 |
+
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
| 174 |
+
:param up: if True, use this block for upsampling.
|
| 175 |
+
:param down: if True, use this block for downsampling.
|
| 176 |
+
"""
|
| 177 |
+
|
| 178 |
+
def __init__(
|
| 179 |
+
self,
|
| 180 |
+
channels,
|
| 181 |
+
emb_channels,
|
| 182 |
+
dropout,
|
| 183 |
+
out_channels=None,
|
| 184 |
+
use_conv=False,
|
| 185 |
+
use_scale_shift_norm=False,
|
| 186 |
+
dims=2,
|
| 187 |
+
use_checkpoint=False,
|
| 188 |
+
up=False,
|
| 189 |
+
down=False,
|
| 190 |
+
):
|
| 191 |
+
super().__init__()
|
| 192 |
+
self.channels = channels
|
| 193 |
+
self.emb_channels = emb_channels
|
| 194 |
+
self.dropout = dropout
|
| 195 |
+
self.out_channels = out_channels or channels
|
| 196 |
+
self.use_conv = use_conv
|
| 197 |
+
self.use_checkpoint = use_checkpoint
|
| 198 |
+
self.use_scale_shift_norm = use_scale_shift_norm
|
| 199 |
+
|
| 200 |
+
self.in_layers = nn.Sequential(
|
| 201 |
+
normalization(channels),
|
| 202 |
+
nn.SiLU(),
|
| 203 |
+
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
self.updown = up or down
|
| 207 |
+
|
| 208 |
+
if up:
|
| 209 |
+
self.h_upd = Upsample(channels, False, dims)
|
| 210 |
+
self.x_upd = Upsample(channels, False, dims)
|
| 211 |
+
elif down:
|
| 212 |
+
self.h_upd = Downsample(channels, False, dims)
|
| 213 |
+
self.x_upd = Downsample(channels, False, dims)
|
| 214 |
+
else:
|
| 215 |
+
self.h_upd = self.x_upd = nn.Identity()
|
| 216 |
+
|
| 217 |
+
self.emb_layers = nn.Sequential(
|
| 218 |
+
nn.SiLU(),
|
| 219 |
+
linear(
|
| 220 |
+
emb_channels,
|
| 221 |
+
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
| 222 |
+
),
|
| 223 |
+
)
|
| 224 |
+
self.out_layers = nn.Sequential(
|
| 225 |
+
normalization(self.out_channels),
|
| 226 |
+
nn.SiLU(),
|
| 227 |
+
nn.Dropout(p=dropout),
|
| 228 |
+
zero_module(
|
| 229 |
+
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
|
| 230 |
+
),
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
+
if self.out_channels == channels:
|
| 234 |
+
self.skip_connection = nn.Identity()
|
| 235 |
+
elif use_conv:
|
| 236 |
+
self.skip_connection = conv_nd(
|
| 237 |
+
dims, channels, self.out_channels, 3, padding=1
|
| 238 |
+
)
|
| 239 |
+
else:
|
| 240 |
+
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
| 241 |
+
|
| 242 |
+
def forward(self, x, emb):
|
| 243 |
+
"""
|
| 244 |
+
Apply the block to a Tensor, conditioned on a timestep embedding.
|
| 245 |
+
:param x: an [N x C x ...] Tensor of features.
|
| 246 |
+
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
| 247 |
+
:return: an [N x C x ...] Tensor of outputs.
|
| 248 |
+
"""
|
| 249 |
+
return checkpoint(
|
| 250 |
+
self._forward, (x, emb), self.parameters(), self.use_checkpoint
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
def _forward(self, x, emb):
|
| 255 |
+
if self.updown:
|
| 256 |
+
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
| 257 |
+
h = in_rest(x)
|
| 258 |
+
h = self.h_upd(h)
|
| 259 |
+
x = self.x_upd(x)
|
| 260 |
+
h = in_conv(h)
|
| 261 |
+
else:
|
| 262 |
+
h = self.in_layers(x)
|
| 263 |
+
emb_out = self.emb_layers(emb).type(h.dtype)
|
| 264 |
+
while len(emb_out.shape) < len(h.shape):
|
| 265 |
+
emb_out = emb_out[..., None]
|
| 266 |
+
if self.use_scale_shift_norm:
|
| 267 |
+
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
| 268 |
+
scale, shift = th.chunk(emb_out, 2, dim=1)
|
| 269 |
+
h = out_norm(h) * (1 + scale) + shift
|
| 270 |
+
h = out_rest(h)
|
| 271 |
+
else:
|
| 272 |
+
h = h + emb_out
|
| 273 |
+
h = self.out_layers(h)
|
| 274 |
+
return self.skip_connection(x) + h
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
class AttentionBlock(nn.Module):
|
| 278 |
+
"""
|
| 279 |
+
An attention block that allows spatial positions to attend to each other.
|
| 280 |
+
Originally ported from here, but adapted to the N-d case.
|
| 281 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
| 282 |
+
"""
|
| 283 |
+
|
| 284 |
+
def __init__(
|
| 285 |
+
self,
|
| 286 |
+
channels,
|
| 287 |
+
num_heads=1,
|
| 288 |
+
num_head_channels=-1,
|
| 289 |
+
use_checkpoint=False,
|
| 290 |
+
use_new_attention_order=False,
|
| 291 |
+
):
|
| 292 |
+
super().__init__()
|
| 293 |
+
self.channels = channels
|
| 294 |
+
if num_head_channels == -1:
|
| 295 |
+
self.num_heads = num_heads
|
| 296 |
+
else:
|
| 297 |
+
assert (
|
| 298 |
+
channels % num_head_channels == 0
|
| 299 |
+
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
| 300 |
+
self.num_heads = channels // num_head_channels
|
| 301 |
+
self.use_checkpoint = use_checkpoint
|
| 302 |
+
self.norm = normalization(channels)
|
| 303 |
+
self.qkv = conv_nd(1, channels, channels * 3, 1)
|
| 304 |
+
if use_new_attention_order:
|
| 305 |
+
# split qkv before split heads
|
| 306 |
+
self.attention = QKVAttention(self.num_heads)
|
| 307 |
+
else:
|
| 308 |
+
# split heads before split qkv
|
| 309 |
+
self.attention = QKVAttentionLegacy(self.num_heads)
|
| 310 |
+
|
| 311 |
+
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
| 312 |
+
|
| 313 |
+
def forward(self, x):
|
| 314 |
+
return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
|
| 315 |
+
#return pt_checkpoint(self._forward, x) # pytorch
|
| 316 |
+
|
| 317 |
+
def _forward(self, x):
|
| 318 |
+
b, c, *spatial = x.shape
|
| 319 |
+
x = x.reshape(b, c, -1)
|
| 320 |
+
qkv = self.qkv(self.norm(x))
|
| 321 |
+
h = self.attention(qkv)
|
| 322 |
+
h = self.proj_out(h)
|
| 323 |
+
return (x + h).reshape(b, c, *spatial)
|
| 324 |
+
|
| 325 |
+
|
| 326 |
+
def count_flops_attn(model, _x, y):
|
| 327 |
+
"""
|
| 328 |
+
A counter for the `thop` package to count the operations in an
|
| 329 |
+
attention operation.
|
| 330 |
+
Meant to be used like:
|
| 331 |
+
macs, params = thop.profile(
|
| 332 |
+
model,
|
| 333 |
+
inputs=(inputs, timestamps),
|
| 334 |
+
custom_ops={QKVAttention: QKVAttention.count_flops},
|
| 335 |
+
)
|
| 336 |
+
"""
|
| 337 |
+
b, c, *spatial = y[0].shape
|
| 338 |
+
num_spatial = int(np.prod(spatial))
|
| 339 |
+
# We perform two matmuls with the same number of ops.
|
| 340 |
+
# The first computes the weight matrix, the second computes
|
| 341 |
+
# the combination of the value vectors.
|
| 342 |
+
matmul_ops = 2 * b * (num_spatial ** 2) * c
|
| 343 |
+
model.total_ops += th.DoubleTensor([matmul_ops])
|
| 344 |
+
|
| 345 |
+
|
| 346 |
+
class QKVAttentionLegacy(nn.Module):
|
| 347 |
+
"""
|
| 348 |
+
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
| 349 |
+
"""
|
| 350 |
+
|
| 351 |
+
def __init__(self, n_heads):
|
| 352 |
+
super().__init__()
|
| 353 |
+
self.n_heads = n_heads
|
| 354 |
+
|
| 355 |
+
def forward(self, qkv):
|
| 356 |
+
"""
|
| 357 |
+
Apply QKV attention.
|
| 358 |
+
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
| 359 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
| 360 |
+
"""
|
| 361 |
+
bs, width, length = qkv.shape
|
| 362 |
+
assert width % (3 * self.n_heads) == 0
|
| 363 |
+
ch = width // (3 * self.n_heads)
|
| 364 |
+
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
| 365 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
| 366 |
+
weight = th.einsum(
|
| 367 |
+
"bct,bcs->bts", q * scale, k * scale
|
| 368 |
+
) # More stable with f16 than dividing afterwards
|
| 369 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
| 370 |
+
a = th.einsum("bts,bcs->bct", weight, v)
|
| 371 |
+
return a.reshape(bs, -1, length)
|
| 372 |
+
|
| 373 |
+
@staticmethod
|
| 374 |
+
def count_flops(model, _x, y):
|
| 375 |
+
return count_flops_attn(model, _x, y)
|
| 376 |
+
|
| 377 |
+
|
| 378 |
+
class QKVAttention(nn.Module):
|
| 379 |
+
"""
|
| 380 |
+
A module which performs QKV attention and splits in a different order.
|
| 381 |
+
"""
|
| 382 |
+
|
| 383 |
+
def __init__(self, n_heads):
|
| 384 |
+
super().__init__()
|
| 385 |
+
self.n_heads = n_heads
|
| 386 |
+
|
| 387 |
+
def forward(self, qkv):
|
| 388 |
+
"""
|
| 389 |
+
Apply QKV attention.
|
| 390 |
+
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
| 391 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
| 392 |
+
"""
|
| 393 |
+
bs, width, length = qkv.shape
|
| 394 |
+
assert width % (3 * self.n_heads) == 0
|
| 395 |
+
ch = width // (3 * self.n_heads)
|
| 396 |
+
q, k, v = qkv.chunk(3, dim=1)
|
| 397 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
| 398 |
+
weight = th.einsum(
|
| 399 |
+
"bct,bcs->bts",
|
| 400 |
+
(q * scale).view(bs * self.n_heads, ch, length),
|
| 401 |
+
(k * scale).view(bs * self.n_heads, ch, length),
|
| 402 |
+
) # More stable with f16 than dividing afterwards
|
| 403 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
| 404 |
+
a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
|
| 405 |
+
return a.reshape(bs, -1, length)
|
| 406 |
+
|
| 407 |
+
@staticmethod
|
| 408 |
+
def count_flops(model, _x, y):
|
| 409 |
+
return count_flops_attn(model, _x, y)
|
| 410 |
+
|
| 411 |
+
|
| 412 |
+
class UNetModel(nn.Module):
|
| 413 |
+
"""
|
| 414 |
+
The full UNet model with attention and timestep embedding.
|
| 415 |
+
:param in_channels: channels in the input Tensor.
|
| 416 |
+
:param model_channels: base channel count for the model.
|
| 417 |
+
:param out_channels: channels in the output Tensor.
|
| 418 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
| 419 |
+
:param attention_resolutions: a collection of downsample rates at which
|
| 420 |
+
attention will take place. May be a set, list, or tuple.
|
| 421 |
+
For example, if this contains 4, then at 4x downsampling, attention
|
| 422 |
+
will be used.
|
| 423 |
+
:param dropout: the dropout probability.
|
| 424 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
| 425 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
| 426 |
+
downsampling.
|
| 427 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
| 428 |
+
:param num_classes: if specified (as an int), then this model will be
|
| 429 |
+
class-conditional with `num_classes` classes.
|
| 430 |
+
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
| 431 |
+
:param num_heads: the number of attention heads in each attention layer.
|
| 432 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
| 433 |
+
a fixed channel width per attention head.
|
| 434 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
| 435 |
+
of heads for upsampling. Deprecated.
|
| 436 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
| 437 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
| 438 |
+
:param use_new_attention_order: use a different attention pattern for potentially
|
| 439 |
+
increased efficiency.
|
| 440 |
+
"""
|
| 441 |
+
|
| 442 |
+
def __init__(
|
| 443 |
+
self,
|
| 444 |
+
image_size,
|
| 445 |
+
in_channels,
|
| 446 |
+
model_channels,
|
| 447 |
+
out_channels,
|
| 448 |
+
num_res_blocks,
|
| 449 |
+
attention_resolutions,
|
| 450 |
+
dropout=0,
|
| 451 |
+
channel_mult=(1, 2, 4, 8),
|
| 452 |
+
conv_resample=True,
|
| 453 |
+
dims=2,
|
| 454 |
+
num_classes=None,
|
| 455 |
+
use_checkpoint=False,
|
| 456 |
+
use_fp16=False,
|
| 457 |
+
use_bf16=False,
|
| 458 |
+
num_heads=-1,
|
| 459 |
+
num_head_channels=-1,
|
| 460 |
+
num_heads_upsample=-1,
|
| 461 |
+
use_scale_shift_norm=False,
|
| 462 |
+
resblock_updown=False,
|
| 463 |
+
use_new_attention_order=False,
|
| 464 |
+
use_spatial_transformer=False, # custom transformer support
|
| 465 |
+
transformer_depth=1, # custom transformer support
|
| 466 |
+
context_dim=None, # custom transformer support
|
| 467 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
| 468 |
+
legacy=True,
|
| 469 |
+
disable_self_attentions=None,
|
| 470 |
+
num_attention_blocks=None,
|
| 471 |
+
disable_middle_self_attn=False,
|
| 472 |
+
use_linear_in_transformer=False,
|
| 473 |
+
):
|
| 474 |
+
super().__init__()
|
| 475 |
+
if use_spatial_transformer:
|
| 476 |
+
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
| 477 |
+
|
| 478 |
+
if context_dim is not None:
|
| 479 |
+
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
| 480 |
+
from omegaconf.listconfig import ListConfig
|
| 481 |
+
if type(context_dim) == ListConfig:
|
| 482 |
+
context_dim = list(context_dim)
|
| 483 |
+
|
| 484 |
+
if num_heads_upsample == -1:
|
| 485 |
+
num_heads_upsample = num_heads
|
| 486 |
+
|
| 487 |
+
if num_heads == -1:
|
| 488 |
+
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
| 489 |
+
|
| 490 |
+
if num_head_channels == -1:
|
| 491 |
+
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
| 492 |
+
|
| 493 |
+
self.image_size = image_size
|
| 494 |
+
self.in_channels = in_channels
|
| 495 |
+
self.model_channels = model_channels
|
| 496 |
+
self.out_channels = out_channels
|
| 497 |
+
if isinstance(num_res_blocks, int):
|
| 498 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
| 499 |
+
else:
|
| 500 |
+
if len(num_res_blocks) != len(channel_mult):
|
| 501 |
+
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
| 502 |
+
"as a list/tuple (per-level) with the same length as channel_mult")
|
| 503 |
+
self.num_res_blocks = num_res_blocks
|
| 504 |
+
if disable_self_attentions is not None:
|
| 505 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
| 506 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
| 507 |
+
if num_attention_blocks is not None:
|
| 508 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
| 509 |
+
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
|
| 510 |
+
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
| 511 |
+
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
| 512 |
+
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
| 513 |
+
f"attention will still not be set.")
|
| 514 |
+
|
| 515 |
+
self.attention_resolutions = attention_resolutions
|
| 516 |
+
self.dropout = dropout
|
| 517 |
+
self.channel_mult = channel_mult
|
| 518 |
+
self.conv_resample = conv_resample
|
| 519 |
+
self.num_classes = num_classes
|
| 520 |
+
self.use_checkpoint = use_checkpoint
|
| 521 |
+
self.dtype = th.float16 if use_fp16 else th.float32
|
| 522 |
+
self.dtype = th.bfloat16 if use_bf16 else self.dtype
|
| 523 |
+
self.num_heads = num_heads
|
| 524 |
+
self.num_head_channels = num_head_channels
|
| 525 |
+
self.num_heads_upsample = num_heads_upsample
|
| 526 |
+
self.predict_codebook_ids = n_embed is not None
|
| 527 |
+
|
| 528 |
+
time_embed_dim = model_channels * 4
|
| 529 |
+
self.time_embed = nn.Sequential(
|
| 530 |
+
linear(model_channels, time_embed_dim),
|
| 531 |
+
nn.SiLU(),
|
| 532 |
+
linear(time_embed_dim, time_embed_dim),
|
| 533 |
+
)
|
| 534 |
+
|
| 535 |
+
if self.num_classes is not None:
|
| 536 |
+
if isinstance(self.num_classes, int):
|
| 537 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
| 538 |
+
elif self.num_classes == "continuous":
|
| 539 |
+
print("setting up linear c_adm embedding layer")
|
| 540 |
+
self.label_emb = nn.Linear(1, time_embed_dim)
|
| 541 |
+
else:
|
| 542 |
+
raise ValueError()
|
| 543 |
+
|
| 544 |
+
self.input_blocks = nn.ModuleList(
|
| 545 |
+
[
|
| 546 |
+
TimestepEmbedSequential(
|
| 547 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
| 548 |
+
)
|
| 549 |
+
]
|
| 550 |
+
)
|
| 551 |
+
self._feature_size = model_channels
|
| 552 |
+
input_block_chans = [model_channels]
|
| 553 |
+
ch = model_channels
|
| 554 |
+
ds = 1
|
| 555 |
+
for level, mult in enumerate(channel_mult):
|
| 556 |
+
for nr in range(self.num_res_blocks[level]):
|
| 557 |
+
layers = [
|
| 558 |
+
ResBlock(
|
| 559 |
+
ch,
|
| 560 |
+
time_embed_dim,
|
| 561 |
+
dropout,
|
| 562 |
+
out_channels=mult * model_channels,
|
| 563 |
+
dims=dims,
|
| 564 |
+
use_checkpoint=use_checkpoint,
|
| 565 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 566 |
+
)
|
| 567 |
+
]
|
| 568 |
+
ch = mult * model_channels
|
| 569 |
+
if ds in attention_resolutions:
|
| 570 |
+
if num_head_channels == -1:
|
| 571 |
+
dim_head = ch // num_heads
|
| 572 |
+
else:
|
| 573 |
+
num_heads = ch // num_head_channels
|
| 574 |
+
dim_head = num_head_channels
|
| 575 |
+
if legacy:
|
| 576 |
+
#num_heads = 1
|
| 577 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
| 578 |
+
if exists(disable_self_attentions):
|
| 579 |
+
disabled_sa = disable_self_attentions[level]
|
| 580 |
+
else:
|
| 581 |
+
disabled_sa = False
|
| 582 |
+
|
| 583 |
+
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
| 584 |
+
layers.append(
|
| 585 |
+
AttentionBlock(
|
| 586 |
+
ch,
|
| 587 |
+
use_checkpoint=use_checkpoint,
|
| 588 |
+
num_heads=num_heads,
|
| 589 |
+
num_head_channels=dim_head,
|
| 590 |
+
use_new_attention_order=use_new_attention_order,
|
| 591 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
| 592 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
| 593 |
+
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
| 594 |
+
use_checkpoint=use_checkpoint
|
| 595 |
+
)
|
| 596 |
+
)
|
| 597 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
| 598 |
+
self._feature_size += ch
|
| 599 |
+
input_block_chans.append(ch)
|
| 600 |
+
if level != len(channel_mult) - 1:
|
| 601 |
+
out_ch = ch
|
| 602 |
+
self.input_blocks.append(
|
| 603 |
+
TimestepEmbedSequential(
|
| 604 |
+
ResBlock(
|
| 605 |
+
ch,
|
| 606 |
+
time_embed_dim,
|
| 607 |
+
dropout,
|
| 608 |
+
out_channels=out_ch,
|
| 609 |
+
dims=dims,
|
| 610 |
+
use_checkpoint=use_checkpoint,
|
| 611 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 612 |
+
down=True,
|
| 613 |
+
)
|
| 614 |
+
if resblock_updown
|
| 615 |
+
else Downsample(
|
| 616 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
| 617 |
+
)
|
| 618 |
+
)
|
| 619 |
+
)
|
| 620 |
+
ch = out_ch
|
| 621 |
+
input_block_chans.append(ch)
|
| 622 |
+
ds *= 2
|
| 623 |
+
self._feature_size += ch
|
| 624 |
+
|
| 625 |
+
if num_head_channels == -1:
|
| 626 |
+
dim_head = ch // num_heads
|
| 627 |
+
else:
|
| 628 |
+
num_heads = ch // num_head_channels
|
| 629 |
+
dim_head = num_head_channels
|
| 630 |
+
if legacy:
|
| 631 |
+
#num_heads = 1
|
| 632 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
| 633 |
+
self.middle_block = TimestepEmbedSequential(
|
| 634 |
+
ResBlock(
|
| 635 |
+
ch,
|
| 636 |
+
time_embed_dim,
|
| 637 |
+
dropout,
|
| 638 |
+
dims=dims,
|
| 639 |
+
use_checkpoint=use_checkpoint,
|
| 640 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 641 |
+
),
|
| 642 |
+
AttentionBlock(
|
| 643 |
+
ch,
|
| 644 |
+
use_checkpoint=use_checkpoint,
|
| 645 |
+
num_heads=num_heads,
|
| 646 |
+
num_head_channels=dim_head,
|
| 647 |
+
use_new_attention_order=use_new_attention_order,
|
| 648 |
+
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
|
| 649 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
| 650 |
+
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
| 651 |
+
use_checkpoint=use_checkpoint
|
| 652 |
+
),
|
| 653 |
+
ResBlock(
|
| 654 |
+
ch,
|
| 655 |
+
time_embed_dim,
|
| 656 |
+
dropout,
|
| 657 |
+
dims=dims,
|
| 658 |
+
use_checkpoint=use_checkpoint,
|
| 659 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 660 |
+
),
|
| 661 |
+
)
|
| 662 |
+
self._feature_size += ch
|
| 663 |
+
|
| 664 |
+
self.output_blocks = nn.ModuleList([])
|
| 665 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
| 666 |
+
for i in range(self.num_res_blocks[level] + 1):
|
| 667 |
+
ich = input_block_chans.pop()
|
| 668 |
+
layers = [
|
| 669 |
+
ResBlock(
|
| 670 |
+
ch + ich,
|
| 671 |
+
time_embed_dim,
|
| 672 |
+
dropout,
|
| 673 |
+
out_channels=model_channels * mult,
|
| 674 |
+
dims=dims,
|
| 675 |
+
use_checkpoint=use_checkpoint,
|
| 676 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 677 |
+
)
|
| 678 |
+
]
|
| 679 |
+
ch = model_channels * mult
|
| 680 |
+
if ds in attention_resolutions:
|
| 681 |
+
if num_head_channels == -1:
|
| 682 |
+
dim_head = ch // num_heads
|
| 683 |
+
else:
|
| 684 |
+
num_heads = ch // num_head_channels
|
| 685 |
+
dim_head = num_head_channels
|
| 686 |
+
if legacy:
|
| 687 |
+
#num_heads = 1
|
| 688 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
| 689 |
+
if exists(disable_self_attentions):
|
| 690 |
+
disabled_sa = disable_self_attentions[level]
|
| 691 |
+
else:
|
| 692 |
+
disabled_sa = False
|
| 693 |
+
|
| 694 |
+
if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
|
| 695 |
+
layers.append(
|
| 696 |
+
AttentionBlock(
|
| 697 |
+
ch,
|
| 698 |
+
use_checkpoint=use_checkpoint,
|
| 699 |
+
num_heads=num_heads_upsample,
|
| 700 |
+
num_head_channels=dim_head,
|
| 701 |
+
use_new_attention_order=use_new_attention_order,
|
| 702 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
| 703 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
| 704 |
+
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
| 705 |
+
use_checkpoint=use_checkpoint
|
| 706 |
+
)
|
| 707 |
+
)
|
| 708 |
+
if level and i == self.num_res_blocks[level]:
|
| 709 |
+
out_ch = ch
|
| 710 |
+
layers.append(
|
| 711 |
+
ResBlock(
|
| 712 |
+
ch,
|
| 713 |
+
time_embed_dim,
|
| 714 |
+
dropout,
|
| 715 |
+
out_channels=out_ch,
|
| 716 |
+
dims=dims,
|
| 717 |
+
use_checkpoint=use_checkpoint,
|
| 718 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 719 |
+
up=True,
|
| 720 |
+
)
|
| 721 |
+
if resblock_updown
|
| 722 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
| 723 |
+
)
|
| 724 |
+
ds //= 2
|
| 725 |
+
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
| 726 |
+
self._feature_size += ch
|
| 727 |
+
|
| 728 |
+
self.out = nn.Sequential(
|
| 729 |
+
normalization(ch),
|
| 730 |
+
nn.SiLU(),
|
| 731 |
+
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
| 732 |
+
)
|
| 733 |
+
if self.predict_codebook_ids:
|
| 734 |
+
self.id_predictor = nn.Sequential(
|
| 735 |
+
normalization(ch),
|
| 736 |
+
conv_nd(dims, model_channels, n_embed, 1),
|
| 737 |
+
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
| 738 |
+
)
|
| 739 |
+
|
| 740 |
+
def convert_to_fp16(self):
|
| 741 |
+
"""
|
| 742 |
+
Convert the torso of the model to float16.
|
| 743 |
+
"""
|
| 744 |
+
self.input_blocks.apply(convert_module_to_f16)
|
| 745 |
+
self.middle_block.apply(convert_module_to_f16)
|
| 746 |
+
self.output_blocks.apply(convert_module_to_f16)
|
| 747 |
+
|
| 748 |
+
def convert_to_fp32(self):
|
| 749 |
+
"""
|
| 750 |
+
Convert the torso of the model to float32.
|
| 751 |
+
"""
|
| 752 |
+
self.input_blocks.apply(convert_module_to_f32)
|
| 753 |
+
self.middle_block.apply(convert_module_to_f32)
|
| 754 |
+
self.output_blocks.apply(convert_module_to_f32)
|
| 755 |
+
|
| 756 |
+
def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
|
| 757 |
+
"""
|
| 758 |
+
Apply the model to an input batch.
|
| 759 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
| 760 |
+
:param timesteps: a 1-D batch of timesteps.
|
| 761 |
+
:param context: conditioning plugged in via crossattn
|
| 762 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
| 763 |
+
:return: an [N x C x ...] Tensor of outputs.
|
| 764 |
+
"""
|
| 765 |
+
assert (y is not None) == (
|
| 766 |
+
self.num_classes is not None
|
| 767 |
+
), "must specify y if and only if the model is class-conditional"
|
| 768 |
+
hs = []
|
| 769 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
| 770 |
+
emb = self.time_embed(t_emb)
|
| 771 |
+
|
| 772 |
+
if self.num_classes is not None:
|
| 773 |
+
assert y.shape[0] == x.shape[0]
|
| 774 |
+
emb = emb + self.label_emb(y)
|
| 775 |
+
|
| 776 |
+
h = x.type(self.dtype)
|
| 777 |
+
for module in self.input_blocks:
|
| 778 |
+
h = module(h, emb, context)
|
| 779 |
+
hs.append(h)
|
| 780 |
+
h = self.middle_block(h, emb, context)
|
| 781 |
+
for module in self.output_blocks:
|
| 782 |
+
h = th.cat([h, hs.pop()], dim=1)
|
| 783 |
+
h = module(h, emb, context)
|
| 784 |
+
h = h.type(x.dtype)
|
| 785 |
+
if self.predict_codebook_ids:
|
| 786 |
+
return self.id_predictor(h)
|
| 787 |
+
else:
|
| 788 |
+
return self.out(h)
|
ldm/modules/diffusionmodules/upscaling.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import numpy as np
|
| 4 |
+
from functools import partial
|
| 5 |
+
|
| 6 |
+
from ldm.modules.diffusionmodules.util import extract_into_tensor, make_beta_schedule
|
| 7 |
+
from ldm.util import default
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class AbstractLowScaleModel(nn.Module):
|
| 11 |
+
# for concatenating a downsampled image to the latent representation
|
| 12 |
+
def __init__(self, noise_schedule_config=None):
|
| 13 |
+
super(AbstractLowScaleModel, self).__init__()
|
| 14 |
+
if noise_schedule_config is not None:
|
| 15 |
+
self.register_schedule(**noise_schedule_config)
|
| 16 |
+
|
| 17 |
+
def register_schedule(self, beta_schedule="linear", timesteps=1000,
|
| 18 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
| 19 |
+
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
|
| 20 |
+
cosine_s=cosine_s)
|
| 21 |
+
alphas = 1. - betas
|
| 22 |
+
alphas_cumprod = np.cumprod(alphas, axis=0)
|
| 23 |
+
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
| 24 |
+
|
| 25 |
+
timesteps, = betas.shape
|
| 26 |
+
self.num_timesteps = int(timesteps)
|
| 27 |
+
self.linear_start = linear_start
|
| 28 |
+
self.linear_end = linear_end
|
| 29 |
+
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
|
| 30 |
+
|
| 31 |
+
to_torch = partial(torch.tensor, dtype=torch.float32)
|
| 32 |
+
|
| 33 |
+
self.register_buffer('betas', to_torch(betas))
|
| 34 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
| 35 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
|
| 36 |
+
|
| 37 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
| 38 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
| 39 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
| 40 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
|
| 41 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
|
| 42 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
|
| 43 |
+
|
| 44 |
+
def q_sample(self, x_start, t, noise=None):
|
| 45 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
| 46 |
+
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
|
| 47 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
|
| 48 |
+
|
| 49 |
+
def forward(self, x):
|
| 50 |
+
return x, None
|
| 51 |
+
|
| 52 |
+
def decode(self, x):
|
| 53 |
+
return x
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class SimpleImageConcat(AbstractLowScaleModel):
|
| 57 |
+
# no noise level conditioning
|
| 58 |
+
def __init__(self):
|
| 59 |
+
super(SimpleImageConcat, self).__init__(noise_schedule_config=None)
|
| 60 |
+
self.max_noise_level = 0
|
| 61 |
+
|
| 62 |
+
def forward(self, x):
|
| 63 |
+
# fix to constant noise level
|
| 64 |
+
return x, torch.zeros(x.shape[0], device=x.device).long()
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
class ImageConcatWithNoiseAugmentation(AbstractLowScaleModel):
|
| 68 |
+
def __init__(self, noise_schedule_config, max_noise_level=1000, to_cuda=False):
|
| 69 |
+
super().__init__(noise_schedule_config=noise_schedule_config)
|
| 70 |
+
self.max_noise_level = max_noise_level
|
| 71 |
+
|
| 72 |
+
def forward(self, x, noise_level=None):
|
| 73 |
+
if noise_level is None:
|
| 74 |
+
noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long()
|
| 75 |
+
else:
|
| 76 |
+
assert isinstance(noise_level, torch.Tensor)
|
| 77 |
+
z = self.q_sample(x, noise_level)
|
| 78 |
+
return z, noise_level
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
|
ldm/modules/diffusionmodules/util.py
ADDED
|
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# adopted from
|
| 2 |
+
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
| 3 |
+
# and
|
| 4 |
+
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
| 5 |
+
# and
|
| 6 |
+
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
|
| 7 |
+
#
|
| 8 |
+
# thanks!
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
import os
|
| 12 |
+
import math
|
| 13 |
+
import torch
|
| 14 |
+
import torch.nn as nn
|
| 15 |
+
import numpy as np
|
| 16 |
+
from einops import repeat
|
| 17 |
+
|
| 18 |
+
from ldm.util import instantiate_from_config
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
| 22 |
+
if schedule == "linear":
|
| 23 |
+
betas = (
|
| 24 |
+
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
elif schedule == "cosine":
|
| 28 |
+
timesteps = (
|
| 29 |
+
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
|
| 30 |
+
)
|
| 31 |
+
alphas = timesteps / (1 + cosine_s) * np.pi / 2
|
| 32 |
+
alphas = torch.cos(alphas).pow(2)
|
| 33 |
+
alphas = alphas / alphas[0]
|
| 34 |
+
betas = 1 - alphas[1:] / alphas[:-1]
|
| 35 |
+
betas = np.clip(betas, a_min=0, a_max=0.999)
|
| 36 |
+
|
| 37 |
+
elif schedule == "sqrt_linear":
|
| 38 |
+
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
|
| 39 |
+
elif schedule == "sqrt":
|
| 40 |
+
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
|
| 41 |
+
else:
|
| 42 |
+
raise ValueError(f"schedule '{schedule}' unknown.")
|
| 43 |
+
return betas.numpy()
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
|
| 47 |
+
if ddim_discr_method == 'uniform':
|
| 48 |
+
c = num_ddpm_timesteps // num_ddim_timesteps
|
| 49 |
+
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
|
| 50 |
+
elif ddim_discr_method == 'quad':
|
| 51 |
+
ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
|
| 52 |
+
else:
|
| 53 |
+
raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
|
| 54 |
+
|
| 55 |
+
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
|
| 56 |
+
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
| 57 |
+
steps_out = ddim_timesteps + 1
|
| 58 |
+
if verbose:
|
| 59 |
+
print(f'Selected timesteps for ddim sampler: {steps_out}')
|
| 60 |
+
return steps_out
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
|
| 64 |
+
# select alphas for computing the variance schedule
|
| 65 |
+
alphas = alphacums[ddim_timesteps]
|
| 66 |
+
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
|
| 67 |
+
|
| 68 |
+
# according the the formula provided in https://arxiv.org/abs/2010.02502
|
| 69 |
+
sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
|
| 70 |
+
if verbose:
|
| 71 |
+
print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
|
| 72 |
+
print(f'For the chosen value of eta, which is {eta}, '
|
| 73 |
+
f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
|
| 74 |
+
return sigmas, alphas, alphas_prev
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
| 78 |
+
"""
|
| 79 |
+
Create a beta schedule that discretizes the given alpha_t_bar function,
|
| 80 |
+
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
| 81 |
+
:param num_diffusion_timesteps: the number of betas to produce.
|
| 82 |
+
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
| 83 |
+
produces the cumulative product of (1-beta) up to that
|
| 84 |
+
part of the diffusion process.
|
| 85 |
+
:param max_beta: the maximum beta to use; use values lower than 1 to
|
| 86 |
+
prevent singularities.
|
| 87 |
+
"""
|
| 88 |
+
betas = []
|
| 89 |
+
for i in range(num_diffusion_timesteps):
|
| 90 |
+
t1 = i / num_diffusion_timesteps
|
| 91 |
+
t2 = (i + 1) / num_diffusion_timesteps
|
| 92 |
+
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
| 93 |
+
return np.array(betas)
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def extract_into_tensor(a, t, x_shape):
|
| 97 |
+
b, *_ = t.shape
|
| 98 |
+
out = a.gather(-1, t)
|
| 99 |
+
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def checkpoint(func, inputs, params, flag):
|
| 103 |
+
"""
|
| 104 |
+
Evaluate a function without caching intermediate activations, allowing for
|
| 105 |
+
reduced memory at the expense of extra compute in the backward pass.
|
| 106 |
+
:param func: the function to evaluate.
|
| 107 |
+
:param inputs: the argument sequence to pass to `func`.
|
| 108 |
+
:param params: a sequence of parameters `func` depends on but does not
|
| 109 |
+
explicitly take as arguments.
|
| 110 |
+
:param flag: if False, disable gradient checkpointing.
|
| 111 |
+
"""
|
| 112 |
+
if flag:
|
| 113 |
+
args = tuple(inputs) + tuple(params)
|
| 114 |
+
return CheckpointFunction.apply(func, len(inputs), *args)
|
| 115 |
+
else:
|
| 116 |
+
return func(*inputs)
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
class CheckpointFunction(torch.autograd.Function):
|
| 120 |
+
@staticmethod
|
| 121 |
+
def forward(ctx, run_function, length, *args):
|
| 122 |
+
ctx.run_function = run_function
|
| 123 |
+
ctx.input_tensors = list(args[:length])
|
| 124 |
+
ctx.input_params = list(args[length:])
|
| 125 |
+
ctx.gpu_autocast_kwargs = {"enabled": torch.is_autocast_enabled(),
|
| 126 |
+
"dtype": torch.get_autocast_gpu_dtype(),
|
| 127 |
+
"cache_enabled": torch.is_autocast_cache_enabled()}
|
| 128 |
+
with torch.no_grad():
|
| 129 |
+
output_tensors = ctx.run_function(*ctx.input_tensors)
|
| 130 |
+
return output_tensors
|
| 131 |
+
|
| 132 |
+
@staticmethod
|
| 133 |
+
def backward(ctx, *output_grads):
|
| 134 |
+
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
| 135 |
+
with torch.enable_grad(), \
|
| 136 |
+
torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
|
| 137 |
+
# Fixes a bug where the first op in run_function modifies the
|
| 138 |
+
# Tensor storage in place, which is not allowed for detach()'d
|
| 139 |
+
# Tensors.
|
| 140 |
+
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
| 141 |
+
output_tensors = ctx.run_function(*shallow_copies)
|
| 142 |
+
input_grads = torch.autograd.grad(
|
| 143 |
+
output_tensors,
|
| 144 |
+
ctx.input_tensors + ctx.input_params,
|
| 145 |
+
output_grads,
|
| 146 |
+
allow_unused=True,
|
| 147 |
+
)
|
| 148 |
+
del ctx.input_tensors
|
| 149 |
+
del ctx.input_params
|
| 150 |
+
del output_tensors
|
| 151 |
+
return (None, None) + input_grads
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
| 155 |
+
"""
|
| 156 |
+
Create sinusoidal timestep embeddings.
|
| 157 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
| 158 |
+
These may be fractional.
|
| 159 |
+
:param dim: the dimension of the output.
|
| 160 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
| 161 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
| 162 |
+
"""
|
| 163 |
+
if not repeat_only:
|
| 164 |
+
half = dim // 2
|
| 165 |
+
freqs = torch.exp(
|
| 166 |
+
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
| 167 |
+
).to(device=timesteps.device)
|
| 168 |
+
args = timesteps[:, None].float() * freqs[None]
|
| 169 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
| 170 |
+
if dim % 2:
|
| 171 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
| 172 |
+
else:
|
| 173 |
+
embedding = repeat(timesteps, 'b -> b d', d=dim)
|
| 174 |
+
return embedding
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
def zero_module(module):
|
| 178 |
+
"""
|
| 179 |
+
Zero out the parameters of a module and return it.
|
| 180 |
+
"""
|
| 181 |
+
for p in module.parameters():
|
| 182 |
+
p.detach().zero_()
|
| 183 |
+
return module
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
def scale_module(module, scale):
|
| 187 |
+
"""
|
| 188 |
+
Scale the parameters of a module and return it.
|
| 189 |
+
"""
|
| 190 |
+
for p in module.parameters():
|
| 191 |
+
p.detach().mul_(scale)
|
| 192 |
+
return module
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
def mean_flat(tensor):
|
| 196 |
+
"""
|
| 197 |
+
Take the mean over all non-batch dimensions.
|
| 198 |
+
"""
|
| 199 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
def normalization(channels):
|
| 203 |
+
"""
|
| 204 |
+
Make a standard normalization layer.
|
| 205 |
+
:param channels: number of input channels.
|
| 206 |
+
:return: an nn.Module for normalization.
|
| 207 |
+
"""
|
| 208 |
+
return GroupNorm32(32, channels)
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
|
| 212 |
+
class SiLU(nn.Module):
|
| 213 |
+
def forward(self, x):
|
| 214 |
+
return x * torch.sigmoid(x)
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
class GroupNorm32(nn.GroupNorm):
|
| 218 |
+
def forward(self, x):
|
| 219 |
+
return super().forward(x.float()).type(x.dtype)
|
| 220 |
+
|
| 221 |
+
def conv_nd(dims, *args, **kwargs):
|
| 222 |
+
"""
|
| 223 |
+
Create a 1D, 2D, or 3D convolution module.
|
| 224 |
+
"""
|
| 225 |
+
if dims == 1:
|
| 226 |
+
return nn.Conv1d(*args, **kwargs)
|
| 227 |
+
elif dims == 2:
|
| 228 |
+
return nn.Conv2d(*args, **kwargs)
|
| 229 |
+
elif dims == 3:
|
| 230 |
+
return nn.Conv3d(*args, **kwargs)
|
| 231 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
def linear(*args, **kwargs):
|
| 235 |
+
"""
|
| 236 |
+
Create a linear module.
|
| 237 |
+
"""
|
| 238 |
+
return nn.Linear(*args, **kwargs)
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
def avg_pool_nd(dims, *args, **kwargs):
|
| 242 |
+
"""
|
| 243 |
+
Create a 1D, 2D, or 3D average pooling module.
|
| 244 |
+
"""
|
| 245 |
+
if dims == 1:
|
| 246 |
+
return nn.AvgPool1d(*args, **kwargs)
|
| 247 |
+
elif dims == 2:
|
| 248 |
+
return nn.AvgPool2d(*args, **kwargs)
|
| 249 |
+
elif dims == 3:
|
| 250 |
+
return nn.AvgPool3d(*args, **kwargs)
|
| 251 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
class HybridConditioner(nn.Module):
|
| 255 |
+
|
| 256 |
+
def __init__(self, c_concat_config, c_crossattn_config):
|
| 257 |
+
super().__init__()
|
| 258 |
+
self.concat_conditioner = instantiate_from_config(c_concat_config)
|
| 259 |
+
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
|
| 260 |
+
|
| 261 |
+
def forward(self, c_concat, c_crossattn):
|
| 262 |
+
c_concat = self.concat_conditioner(c_concat)
|
| 263 |
+
c_crossattn = self.crossattn_conditioner(c_crossattn)
|
| 264 |
+
return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
def noise_like(shape, device, repeat=False):
|
| 268 |
+
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
| 269 |
+
noise = lambda: torch.randn(shape, device=device)
|
| 270 |
+
return repeat_noise() if repeat else noise()
|
ldm/modules/distributions/__init__.py
ADDED
|
File without changes
|
ldm/modules/distributions/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (187 Bytes). View file
|
|
|
ldm/modules/distributions/__pycache__/__init__.cpython-312.pyc
ADDED
|
Binary file (183 Bytes). View file
|
|
|
ldm/modules/distributions/__pycache__/__init__.cpython-38.pyc
ADDED
|
Binary file (162 Bytes). View file
|
|
|
ldm/modules/distributions/__pycache__/distributions.cpython-311.pyc
ADDED
|
Binary file (6.24 kB). View file
|
|
|