File size: 8,312 Bytes
ddabbe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
"""
Vector database manager for NBA data using ChromaDB and sentence-transformers.
"""
import os
import pandas as pd
import chromadb
from chromadb.config import Settings
from sentence_transformers import SentenceTransformer
from typing import List, Dict, Optional
import json


class NBAVectorDB:
    """
    Manages vector embeddings and semantic search for NBA data.
    Uses sentence-transformers for embeddings and ChromaDB for storage.
    """
    
    def __init__(self, csv_path: str, collection_name: str = "nba_data", persist_directory: str = "./chroma_db"):
        """
        Initialize the vector database.
        
        Args:
            csv_path: Path to the NBA CSV file
            collection_name: Name of the ChromaDB collection
            persist_directory: Directory to persist the vector database
        """
        self.csv_path = csv_path
        self.collection_name = collection_name
        self.persist_directory = persist_directory
        
        # Initialize embedding model (open-source, runs locally)
        # Using all-MiniLM-L6-v2: fast, good quality, 384 dimensions
        print("Loading embedding model...")
        self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
        print("Embedding model loaded!")
        
        # Initialize ChromaDB client
        os.makedirs(persist_directory, exist_ok=True)
        self.client = chromadb.PersistentClient(
            path=persist_directory,
            settings=Settings(anonymized_telemetry=False)
        )
        
        # Get or create collection
        self.collection = self.client.get_or_create_collection(
            name=collection_name,
            metadata={"description": "NBA 2024-25 season data"}
        )
        
        # Check if collection is empty and needs indexing
        if self.collection.count() == 0:
            print("Vector database is empty. Indexing CSV data...")
            self._index_csv()
        else:
            print(f"Vector database loaded with {self.collection.count()} records")
    
    def _create_text_representation(self, row: pd.Series) -> str:
        """
        Convert a DataFrame row to a text representation for embedding.
        
        Args:
            row: A pandas Series representing a row
            
        Returns:
            str: Text representation of the row
        """
        # Create a natural language description of the row
        parts = []
        
        if 'Player' in row:
            parts.append(f"Player: {row['Player']}")
        if 'Tm' in row:
            parts.append(f"Team: {row['Tm']}")
        if 'Opp' in row:
            parts.append(f"Opponent: {row['Opp']}")
        if 'Res' in row:
            parts.append(f"Result: {'Win' if row['Res'] == 'W' else 'Loss'}")
        if 'PTS' in row and pd.notna(row['PTS']):
            parts.append(f"Points: {row['PTS']}")
        if 'AST' in row and pd.notna(row['AST']):
            parts.append(f"Assists: {row['AST']}")
        if 'TRB' in row and pd.notna(row['TRB']):
            parts.append(f"Rebounds: {row['TRB']}")
        if 'FG%' in row and pd.notna(row['FG%']):
            parts.append(f"Field Goal Percentage: {row['FG%']:.3f}")
        if '3P%' in row and pd.notna(row['3P%']):
            parts.append(f"Three Point Percentage: {row['3P%']:.3f}")
        if 'Data' in row:
            parts.append(f"Date: {row['Data']}")
        
        return ". ".join(parts)
    
    def _index_csv(self):
        """
        Read CSV file, create embeddings, and store in ChromaDB.
        """
        print(f"Reading CSV from {self.csv_path}...")
        df = pd.read_csv(self.csv_path)
        
        print(f"Creating embeddings for {len(df)} records...")
        texts = []
        metadatas = []
        ids = []
        
        # Process in batches for efficiency
        batch_size = 100
        total_batches = (len(df) + batch_size - 1) // batch_size
        
        for batch_idx in range(0, len(df), batch_size):
            batch_df = df.iloc[batch_idx:batch_idx + batch_size]
            batch_num = (batch_idx // batch_size) + 1
            
            batch_texts = []
            batch_metadatas = []
            batch_ids = []
            
            for idx, row in batch_df.iterrows():
                # Create text representation
                text = self._create_text_representation(row)
                batch_texts.append(text)
                
                # Store metadata (original row data as JSON)
                metadata = {
                    'row_index': int(idx),
                    'player': str(row.get('Player', '')),
                    'team': str(row.get('Tm', '')),
                    'opponent': str(row.get('Opp', '')),
                    'result': str(row.get('Res', '')),
                    'points': float(row.get('PTS', 0)) if pd.notna(row.get('PTS')) else 0.0,
                    'date': str(row.get('Data', '')),
                }
                batch_metadatas.append(metadata)
                batch_ids.append(f"row_{idx}")
            
            # Generate embeddings for this batch
            print(f"Processing batch {batch_num}/{total_batches} ({len(batch_texts)} records)...")
            embeddings = self.embedding_model.encode(
                batch_texts,
                show_progress_bar=False,
                convert_to_numpy=True
            ).tolist()
            
            # Add to ChromaDB
            self.collection.add(
                embeddings=embeddings,
                documents=batch_texts,
                metadatas=batch_metadatas,
                ids=batch_ids
            )
            
            texts.extend(batch_texts)
            metadatas.extend(batch_metadatas)
            ids.extend(batch_ids)
        
        print(f"Successfully indexed {len(df)} records in vector database!")
    
    def search(self, query: str, n_results: int = 10) -> List[Dict]:
        """
        Perform semantic search on the NBA data.
        
        Args:
            query: Natural language query
            n_results: Number of results to return
            
        Returns:
            List of dictionaries containing search results with metadata
        """
        # Generate embedding for the query
        query_embedding = self.embedding_model.encode(
            query,
            convert_to_numpy=True
        ).tolist()
        
        # Search in ChromaDB
        results = self.collection.query(
            query_embeddings=[query_embedding],
            n_results=n_results,
            include=['documents', 'metadatas', 'distances']
        )
        
        # Format results
        formatted_results = []
        if results['ids'] and len(results['ids'][0]) > 0:
            for i in range(len(results['ids'][0])):
                formatted_results.append({
                    'id': results['ids'][0][i],
                    'document': results['documents'][0][i],
                    'metadata': results['metadatas'][0][i],
                    'distance': results['distances'][0][i],
                    'similarity': 1 - results['distances'][0][i]  # Convert distance to similarity
                })
        
        return formatted_results
    
    def get_original_row(self, row_index: int) -> Optional[pd.Series]:
        """
        Retrieve the original CSV row by index.
        
        Args:
            row_index: Index of the row in the original CSV
            
        Returns:
            pandas Series or None if not found
        """
        try:
            df = pd.read_csv(self.csv_path)
            if 0 <= row_index < len(df):
                return df.iloc[row_index]
        except Exception as e:
            print(f"Error retrieving row {row_index}: {e}")
        return None


# Global instance (will be initialized when needed)
_vector_db_instance: Optional[NBAVectorDB] = None


def get_vector_db(csv_path: str) -> NBAVectorDB:
    """
    Get or create the global vector database instance.
    
    Args:
        csv_path: Path to the CSV file
        
    Returns:
        NBAVectorDB instance
    """
    global _vector_db_instance
    if _vector_db_instance is None or _vector_db_instance.csv_path != csv_path:
        _vector_db_instance = NBAVectorDB(csv_path)
    return _vector_db_instance