Spaces:
Sleeping
Sleeping
Commit
·
8d5b1f0
1
Parent(s):
5b81afa
made changes
Browse files
README.md
CHANGED
|
@@ -9,4 +9,46 @@ app_file: app.py
|
|
| 9 |
pinned: false
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
pinned: false
|
| 10 |
---
|
| 11 |
|
| 12 |
+
# NBA Data Analysis with CrewAI
|
| 13 |
+
|
| 14 |
+
An intelligent NBA data analysis application powered by CrewAI agents. Upload your NBA CSV data and get comprehensive analysis with insights, statistics, and engaging storylines.
|
| 15 |
+
|
| 16 |
+
## Features
|
| 17 |
+
|
| 18 |
+
- 📊 **Data Engineering**: Automatic data cleaning and preparation
|
| 19 |
+
- 🔍 **Intelligent Analysis**: AI-powered insights and pattern detection
|
| 20 |
+
- 📈 **Statistical Analysis**: Top performers, trends, and key metrics
|
| 21 |
+
- 📝 **Storytelling**: Engaging headlines and narratives from data
|
| 22 |
+
- 🎯 **Semantic Search**: Natural language queries on your data
|
| 23 |
+
|
| 24 |
+
## How to Use
|
| 25 |
+
|
| 26 |
+
1. **Upload a CSV file** with NBA data
|
| 27 |
+
2. **Enter your analysis query** (or leave blank for comprehensive analysis)
|
| 28 |
+
3. **Click "Analyze Dataset"** and wait for results
|
| 29 |
+
4. **View insights** from Engineer, Analyst, and Storyteller agents
|
| 30 |
+
|
| 31 |
+
## Example Queries
|
| 32 |
+
|
| 33 |
+
- "Who are the top 5 three-point shooters?"
|
| 34 |
+
- "Show me the best scoring games this season"
|
| 35 |
+
- "Which players have the highest field goal percentage?"
|
| 36 |
+
- "Analyze team performance trends"
|
| 37 |
+
|
| 38 |
+
## Technology Stack
|
| 39 |
+
|
| 40 |
+
- **CrewAI**: Multi-agent AI framework
|
| 41 |
+
- **Gradio**: Web interface
|
| 42 |
+
- **Pandas**: Data analysis
|
| 43 |
+
- **ChromaDB**: Vector database for semantic search
|
| 44 |
+
- **OpenRouter**: Free open-source LLM access
|
| 45 |
+
|
| 46 |
+
## Free to Use
|
| 47 |
+
|
| 48 |
+
This application uses free-tier services:
|
| 49 |
+
- OpenRouter for LLM access (free tier)
|
| 50 |
+
- Hugging Face Spaces for hosting (free tier)
|
| 51 |
+
|
| 52 |
+
---
|
| 53 |
+
|
| 54 |
+
Built with ❤️ using CrewAI
|
app.py
CHANGED
|
@@ -326,10 +326,9 @@ if __name__ == "__main__":
|
|
| 326 |
print("Creating Gradio app...")
|
| 327 |
app = create_app()
|
| 328 |
print("Launching Gradio app...")
|
|
|
|
|
|
|
| 329 |
app.launch(
|
| 330 |
-
server_name="0.0.0.0",
|
| 331 |
-
server_port=7860,
|
| 332 |
-
share=False,
|
| 333 |
show_error=True
|
| 334 |
)
|
| 335 |
except Exception as e:
|
|
|
|
| 326 |
print("Creating Gradio app...")
|
| 327 |
app = create_app()
|
| 328 |
print("Launching Gradio app...")
|
| 329 |
+
# For Hugging Face Spaces, use default launch settings
|
| 330 |
+
# Spaces will automatically handle server_name and port
|
| 331 |
app.launch(
|
|
|
|
|
|
|
|
|
|
| 332 |
show_error=True
|
| 333 |
)
|
| 334 |
except Exception as e:
|
config.py
CHANGED
|
@@ -7,31 +7,80 @@ from crewai import LLM
|
|
| 7 |
# NBA Data Configuration
|
| 8 |
NBA_DATA_PATH = "nba24-25.csv"
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
# OpenAI Configuration
|
| 11 |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
| 12 |
-
OPENAI_MODEL = os.getenv("OPENAI_MODEL", "gpt-4o")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
|
|
|
|
| 16 |
|
| 17 |
|
| 18 |
def get_llm() -> LLM:
|
| 19 |
"""
|
| 20 |
-
Create and return a CrewAI LLM instance configured
|
| 21 |
|
| 22 |
Returns:
|
| 23 |
-
LLM: Configured CrewAI LLM instance
|
| 24 |
|
| 25 |
Raises:
|
| 26 |
-
ValueError: If
|
| 27 |
"""
|
| 28 |
-
if
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
)
|
| 33 |
-
return LLM(
|
| 34 |
-
model=OPENAI_MODEL,
|
| 35 |
-
api_key=OPENAI_API_KEY
|
| 36 |
-
)
|
| 37 |
|
|
|
|
| 7 |
# NBA Data Configuration
|
| 8 |
NBA_DATA_PATH = "nba24-25.csv"
|
| 9 |
|
| 10 |
+
# LLM Configuration - Choose your provider
|
| 11 |
+
# Options: "openai", "ollama", "litellm", "openrouter"
|
| 12 |
+
# Default to openrouter for free tier access
|
| 13 |
+
LLM_PROVIDER = os.getenv("LLM_PROVIDER", "openrouter") # Default to free tier
|
| 14 |
+
|
| 15 |
# OpenAI Configuration
|
| 16 |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
| 17 |
+
OPENAI_MODEL = os.getenv("OPENAI_MODEL", "gpt-4o")
|
| 18 |
+
|
| 19 |
+
# Ollama Configuration (for local open-source models)
|
| 20 |
+
OLLAMA_BASE_URL = os.getenv("OLLAMA_BASE_URL", "http://localhost:11434")
|
| 21 |
+
OLLAMA_MODEL = os.getenv("OLLAMA_MODEL", "llama3.2") # Options: llama3.2, mistral, qwen2.5, etc.
|
| 22 |
+
|
| 23 |
+
# LiteLLM Configuration (for Hugging Face or other providers)
|
| 24 |
+
LITELLM_MODEL = os.getenv("LITELLM_MODEL", "huggingface/meta-llama/Llama-3.2-3B-Instruct")
|
| 25 |
+
LITELLM_API_KEY = os.getenv("LITELLM_API_KEY", "") # Optional, depends on provider
|
| 26 |
|
| 27 |
+
# OpenRouter Configuration (access to many open-source models)
|
| 28 |
+
OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY")
|
| 29 |
+
OPENROUTER_MODEL = os.getenv("OPENROUTER_MODEL", "meta-llama/llama-3.2-3b-instruct:free") # Free tier available
|
| 30 |
|
| 31 |
|
| 32 |
def get_llm() -> LLM:
|
| 33 |
"""
|
| 34 |
+
Create and return a CrewAI LLM instance based on the configured provider.
|
| 35 |
|
| 36 |
Returns:
|
| 37 |
+
LLM: Configured CrewAI LLM instance
|
| 38 |
|
| 39 |
Raises:
|
| 40 |
+
ValueError: If required configuration is not set
|
| 41 |
"""
|
| 42 |
+
if LLM_PROVIDER == "ollama":
|
| 43 |
+
# Option 1: Ollama (local open-source models)
|
| 44 |
+
# Install: brew install ollama (Mac) or see https://ollama.ai
|
| 45 |
+
# Run: ollama pull llama3.2
|
| 46 |
+
return LLM(
|
| 47 |
+
model=OLLAMA_MODEL,
|
| 48 |
+
base_url=OLLAMA_BASE_URL,
|
| 49 |
+
api_key="ollama" # Ollama doesn't require a real API key, but CrewAI needs something
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
elif LLM_PROVIDER == "litellm":
|
| 53 |
+
# Option 2: LiteLLM (supports Hugging Face, Together AI, etc.)
|
| 54 |
+
# Format: huggingface/model-name or together_ai/model-name
|
| 55 |
+
return LLM(
|
| 56 |
+
model=f"litellm/{LITELLM_MODEL}",
|
| 57 |
+
api_key=LITELLM_API_KEY if LITELLM_API_KEY else "dummy" # Some providers don't need keys
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
elif LLM_PROVIDER == "openrouter":
|
| 61 |
+
# Option 3: OpenRouter (access to many open-source models)
|
| 62 |
+
# Free tier available: https://openrouter.ai
|
| 63 |
+
# Note: For Hugging Face Spaces, set OPENROUTER_API_KEY as a secret
|
| 64 |
+
if not OPENROUTER_API_KEY:
|
| 65 |
+
# Try to use without key (some free models might work)
|
| 66 |
+
# But it's better to set the key for reliability
|
| 67 |
+
print("Warning: OPENROUTER_API_KEY not set. Some models may not work.")
|
| 68 |
+
print("Get a free key at https://openrouter.ai")
|
| 69 |
+
return LLM(
|
| 70 |
+
model=OPENROUTER_MODEL,
|
| 71 |
+
base_url="https://openrouter.ai/api/v1",
|
| 72 |
+
api_key=OPENROUTER_API_KEY if OPENROUTER_API_KEY else "free"
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
else:
|
| 76 |
+
# Default: OpenAI (original configuration)
|
| 77 |
+
if not OPENAI_API_KEY:
|
| 78 |
+
raise ValueError(
|
| 79 |
+
"OPENAI_API_KEY environment variable is not set. "
|
| 80 |
+
"Please set it using: export OPENAI_API_KEY='your-api-key'"
|
| 81 |
+
)
|
| 82 |
+
return LLM(
|
| 83 |
+
model=OPENAI_MODEL,
|
| 84 |
+
api_key=OPENAI_API_KEY
|
| 85 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
main.py
CHANGED
|
@@ -11,7 +11,8 @@ def main():
|
|
| 11 |
"""Main function to run the NBA data analysis crew."""
|
| 12 |
print("=" * 60)
|
| 13 |
print("NBA 2024-25 Data Analysis with CrewAI")
|
| 14 |
-
|
|
|
|
| 15 |
print("=" * 60)
|
| 16 |
print()
|
| 17 |
|
|
|
|
| 11 |
"""Main function to run the NBA data analysis crew."""
|
| 12 |
print("=" * 60)
|
| 13 |
print("NBA 2024-25 Data Analysis with CrewAI")
|
| 14 |
+
from config import LLM_PROVIDER
|
| 15 |
+
print(f"Using LLM Provider: {LLM_PROVIDER.upper()}")
|
| 16 |
print("=" * 60)
|
| 17 |
print()
|
| 18 |
|