Spaces:
Runtime error
Runtime error
| """PyTorch Qwen2 model.""" | |
| import math | |
| from typing import List, Optional, Tuple, Union | |
| import torch | |
| import torch.utils.checkpoint | |
| from torch import nn | |
| from einops import rearrange | |
| from transformers.cache_utils import Cache | |
| from transformers.modeling_flash_attention_utils import _flash_attention_forward | |
| from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS | |
| from transformers.utils import ( | |
| is_flash_attn_2_available, | |
| is_flash_attn_greater_or_equal_2_10 | |
| ) | |
| from transformers.activations import ACT2FN | |
| if is_flash_attn_2_available(): | |
| from flash_attn.bert_padding import index_first_axis | |
| from flash_attn import flash_attn_varlen_func | |
| class ScaleDotProductCrossAttention(nn.Module): | |
| def __init__(self, layer_number, softmax_scale=None, attention_dropout=0.0): | |
| super().__init__() | |
| self.layer_number = layer_number | |
| self.softmax_scale = softmax_scale | |
| self.dropout_p = attention_dropout | |
| def forward(self, q, k, v, attn_mask=None): | |
| """Implements the multihead softmax attention. | |
| Arguments | |
| --------- | |
| q, k, v: The tensor containing the query, key, and value. (B, S, H, D) | |
| """ | |
| # (N,...,L,E) | |
| if attn_mask is not None: | |
| attn_mask = attn_mask[:,None,:,:].repeat(1, q.shape[1], 1, 1) | |
| # attention mask, True means it will take part in attention B H s_q s_k | |
| if self.training: | |
| dropout_p = self.dropout_p | |
| else: | |
| dropout_p = 0.0 | |
| if q.device.type == "cuda" and attn_mask is not None: | |
| q = q.contiguous() | |
| k = k.contiguous() | |
| v = v.contiguous() | |
| # debug only, calculate the FLOPs for cross-attn | |
| ################## | |
| # attn_weights = torch.matmul(q, k.transpose(2, 3)) / math.sqrt(128) # hardcode | |
| # if attn_mask is not None: # no matter the length, we just slice it | |
| # causal_mask = attn_mask[:, :, :, : k.shape[-2]] | |
| # attn_weights = attn_weights + causal_mask | |
| # # upcast attention to fp32 | |
| # attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype) | |
| # # attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) | |
| # o = torch.matmul(attn_weights, v) | |
| ################### | |
| o = nn.functional.scaled_dot_product_attention(q, k, v, | |
| attn_mask=attn_mask, | |
| dropout_p=dropout_p, | |
| is_causal=False, | |
| scale=self.softmax_scale) | |
| # B Head L D -> L B (Head D) | |
| o = rearrange(o, 'B Head L D -> B L (Head D)').contiguous() | |
| return o | |
| class FlashAttnCrossAttention(nn.Module): | |
| def __init__(self, layer_number, softmax_scale=None, attention_dropout=0.0): | |
| super().__init__() | |
| self.layer_number = layer_number | |
| self.softmax_scale = softmax_scale | |
| self.dropout_p = attention_dropout | |
| def _get_unpad_data(self, attention_mask: torch.Tensor): | |
| """ | |
| Retrieves indexing data required to repad unpadded (ragged) tensors. | |
| Arguments: | |
| attention_mask (`torch.Tensor`): | |
| Boolean or int tensor of shape (batch_size, sequence_length), 1 means valid and 0 means not valid. | |
| Return: | |
| indices (`torch.Tensor`): | |
| The indices of non-masked tokens from the flattened input sequence. | |
| cu_seqlens (`torch.Tensor`): | |
| The cumulative sequence lengths, used to index into ragged (unpadded) tensors. `cu_seqlens` shape is (batch_size + 1,). | |
| max_seqlen_in_batch (`int`): | |
| Maximum sequence length in batch. | |
| """ | |
| seqlens_in_batch = attention_mask[:, 0, :].sum(dim=-1, dtype=torch.int32) # attn mask are the same for the query dimension, pick the first query | |
| indices = torch.nonzero(attention_mask[:, 0, :].flatten(), as_tuple=False).flatten() | |
| max_seqlen_in_batch = seqlens_in_batch.max().item() | |
| cu_seqlens = nn.functional.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) | |
| return ( | |
| indices, | |
| cu_seqlens, | |
| max_seqlen_in_batch, | |
| seqlens_in_batch | |
| ) | |
| def unpad_q(self, q_layer): | |
| # no need to unpad, just flatten | |
| batch_size, q_seq_len, num_key_value_heads, head_dim = q_layer.shape | |
| cu_seqlens_q = torch.tensor([q_seq_len] * batch_size, dtype=torch.int32, device=q_layer.device) | |
| cu_seqlens_q = nn.functional.pad(torch.cumsum(cu_seqlens_q, dim=0, dtype=torch.int32), (1, 0)) | |
| q_layer = q_layer.reshape(batch_size * q_seq_len, num_key_value_heads, head_dim) | |
| return ( | |
| q_layer, | |
| cu_seqlens_q, | |
| q_seq_len) | |
| def unpad_kv(self, key_layer, value_layer, attn_mask): | |
| indices_k, cu_seqlens_k, max_seqlen_in_batch_k, split_size = self._get_unpad_data(attn_mask) | |
| batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape | |
| key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k) | |
| value_layer = index_first_axis( | |
| value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | |
| ) | |
| return ( | |
| key_layer, | |
| value_layer, | |
| indices_k, | |
| cu_seqlens_k, | |
| max_seqlen_in_batch_k, | |
| split_size) | |
| def forward(self, q, k, v, attn_mask=None): | |
| """ | |
| Implements the multihead softmax attention with flash attention varlen api. | |
| Unpad the kv sequence | |
| Arguments | |
| --------- | |
| q, k, v: The tensor containing the query, key, and value. (B, S, H, D) | |
| """ | |
| # (N,...,L,E) | |
| q = q.transpose(1, 2) | |
| k = k.transpose(1, 2) | |
| v = v.transpose(1, 2) | |
| # NOTE: don't know if it's necessary | |
| if q.device.type == "cuda" and attn_mask is not None: | |
| q = q.contiguous() | |
| k = k.contiguous() | |
| v = v.contiguous() | |
| # batch_size = q.shape[0] | |
| # first unpad the q and kv, get cu_seq_len and indices | |
| batch_size, q_seq_len, head_num, head_dim = q.shape | |
| q, cu_seq_lens_q, max_seqlen_in_batch_q = self.unpad_q(q) | |
| k, v, indices_kv, cu_seq_lens_kv, max_seqlen_in_batch_kv, split_size = self.unpad_kv(k, v, attn_mask) | |
| attn_output = flash_attn_varlen_func( | |
| q, | |
| k, | |
| v, | |
| cu_seqlens_q=cu_seq_lens_q, | |
| cu_seqlens_k=cu_seq_lens_kv, | |
| max_seqlen_q=max_seqlen_in_batch_q, | |
| max_seqlen_k=max_seqlen_in_batch_kv, | |
| dropout_p=self.dropout_p if self.training else 0.0, | |
| softmax_scale=None, | |
| causal=False, | |
| # **flash_kwargs | |
| ) | |
| return attn_output.reshape(batch_size, q_seq_len, head_num, head_dim).flatten(2, 3).contiguous() | |
| # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Qwen2 | |
| class Qwen2RMSNorm(nn.Module): | |
| def __init__(self, hidden_size, eps=1e-6): | |
| """ | |
| Qwen2RMSNorm is equivalent to T5LayerNorm | |
| """ | |
| super().__init__() | |
| self.weight = nn.Parameter(torch.ones(hidden_size)) | |
| self.variance_epsilon = eps | |
| def forward(self, hidden_states): | |
| input_dtype = hidden_states.dtype | |
| hidden_states = hidden_states.to(torch.float32) | |
| variance = hidden_states.pow(2).mean(-1, keepdim=True) | |
| hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
| return self.weight * hidden_states.to(input_dtype) | |
| def extra_repr(self): | |
| return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" | |
| # Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Qwen2 | |
| class Qwen2RotaryEmbedding(nn.Module): | |
| def __init__( | |
| self, | |
| dim=None, | |
| max_position_embeddings=2048, | |
| base=10000, | |
| device=None, | |
| scaling_factor=1.0, | |
| rope_type="default", | |
| config=None, | |
| ): | |
| super().__init__() | |
| # TODO (joao): remove the `if` below, only used for BC | |
| self.rope_kwargs = {} | |
| if config is None: | |
| self.rope_kwargs = { | |
| "rope_type": rope_type, | |
| "factor": scaling_factor, | |
| "dim": dim, | |
| "base": base, | |
| "max_position_embeddings": max_position_embeddings, | |
| } | |
| self.rope_type = rope_type | |
| self.max_seq_len_cached = max_position_embeddings | |
| self.original_max_seq_len = max_position_embeddings | |
| else: | |
| # BC: "rope_type" was originally "type" | |
| if config.rope_scaling is not None: | |
| self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) | |
| else: | |
| self.rope_type = "default" | |
| self.max_seq_len_cached = config.max_position_embeddings | |
| self.original_max_seq_len = config.max_position_embeddings | |
| self.config = config | |
| self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] | |
| inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs) | |
| self.register_buffer("inv_freq", inv_freq, persistent=False) | |
| self.original_inv_freq = self.inv_freq | |
| def _dynamic_frequency_update(self, position_ids, device): | |
| """ | |
| dynamic RoPE layers should recompute `inv_freq` in the following situations: | |
| 1 - growing beyond the cached sequence length (allow scaling) | |
| 2 - the current sequence length is in the original scale (avoid losing precision with small sequences) | |
| """ | |
| seq_len = torch.max(position_ids) + 1 | |
| if seq_len > self.max_seq_len_cached: # growth | |
| inv_freq, self.attention_scaling = self.rope_init_fn( | |
| self.config, device, seq_len=seq_len, **self.rope_kwargs | |
| ) | |
| self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation | |
| self.max_seq_len_cached = seq_len | |
| if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset | |
| self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) | |
| self.max_seq_len_cached = self.original_max_seq_len | |
| def forward(self, x, position_ids): | |
| if "dynamic" in self.rope_type: | |
| self._dynamic_frequency_update(position_ids, device=x.device) | |
| # Core RoPE block | |
| inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) | |
| position_ids_expanded = position_ids[:, None, :].float() | |
| # Force float32 (see https://github.com/huggingface/transformers/pull/29285) | |
| device_type = x.device.type | |
| device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" | |
| with torch.autocast(device_type=device_type, enabled=False): | |
| freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) | |
| emb = torch.cat((freqs, freqs), dim=-1) | |
| cos = emb.cos() | |
| sin = emb.sin() | |
| # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention | |
| cos = cos * self.attention_scaling | |
| sin = sin * self.attention_scaling | |
| return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) | |
| # Copied from transformers.models.llama.modeling_llama.rotate_half | |
| def rotate_half(x): | |
| """Rotates half the hidden dims of the input.""" | |
| x1 = x[..., : x.shape[-1] // 2] | |
| x2 = x[..., x.shape[-1] // 2 :] | |
| return torch.cat((-x2, x1), dim=-1) | |
| # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb | |
| def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): | |
| """Applies Rotary Position Embedding to the query and key tensors. | |
| Args: | |
| q (`torch.Tensor`): The query tensor. | |
| k (`torch.Tensor`): The key tensor. | |
| cos (`torch.Tensor`): The cosine part of the rotary embedding. | |
| sin (`torch.Tensor`): The sine part of the rotary embedding. | |
| position_ids (`torch.Tensor`, *optional*): | |
| Deprecated and unused. | |
| unsqueeze_dim (`int`, *optional*, defaults to 1): | |
| The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | |
| sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | |
| that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | |
| k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | |
| cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | |
| the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | |
| Returns: | |
| `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | |
| """ | |
| cos = cos.unsqueeze(unsqueeze_dim) | |
| sin = sin.unsqueeze(unsqueeze_dim) | |
| q_embed = (q * cos) + (rotate_half(q) * sin) | |
| k_embed = (k * cos) + (rotate_half(k) * sin) | |
| return q_embed, k_embed | |
| # Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Qwen2 | |
| class Qwen2MLP(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.hidden_size = config.hidden_size | |
| self.intermediate_size = config.intermediate_size | |
| self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | |
| self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | |
| self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) | |
| self.act_fn = ACT2FN[config.hidden_act] | |
| def forward(self, hidden_state): | |
| return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state)) | |
| # Copied from transformers.models.llama.modeling_llama.repeat_kv | |
| def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | |
| """ | |
| This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | |
| num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | |
| """ | |
| batch, num_key_value_heads, slen, head_dim = hidden_states.shape | |
| if n_rep == 1: | |
| return hidden_states | |
| hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | |
| return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | |
| class Qwen2Attention(nn.Module): | |
| """ | |
| Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer | |
| and "Generating Long Sequences with Sparse Transformers". | |
| """ | |
| def __init__(self, config, layer_idx: Optional[int] = None): | |
| super().__init__() | |
| self.config = config | |
| self.layer_idx = layer_idx | |
| # if layer_idx is None: | |
| # logger.warning_once( | |
| # f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " | |
| # "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " | |
| # "when creating this class." | |
| # ) | |
| self.hidden_size = config.hidden_size | |
| self.num_heads = config.num_attention_heads | |
| self.head_dim = self.hidden_size // self.num_heads | |
| self.num_key_value_heads = config.num_key_value_heads | |
| self.num_key_value_groups = self.num_heads // self.num_key_value_heads | |
| self.max_position_embeddings = config.max_position_embeddings | |
| self.rope_theta = config.rope_theta | |
| self.is_causal = True | |
| self.attention_dropout = config.attention_dropout | |
| if (self.head_dim * self.num_heads) != self.hidden_size: | |
| raise ValueError( | |
| f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" | |
| f" and `num_heads`: {self.num_heads})." | |
| ) | |
| self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) | |
| self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) | |
| self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) | |
| self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) | |
| self.rotary_emb = Qwen2RotaryEmbedding(config=self.config) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_value: Optional[Cache] = None, | |
| output_attentions: bool = False, | |
| use_cache: bool = False, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46 | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
| bsz, q_len, _ = hidden_states.size() | |
| query_states = self.q_proj(hidden_states) | |
| key_states = self.k_proj(hidden_states) | |
| value_states = self.v_proj(hidden_states) | |
| query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
| key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| if position_embeddings is None: | |
| # logger.warning_once( | |
| # "The attention layers in this model are transitioning from computing the RoPE embeddings internally " | |
| # "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed " | |
| # "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be " | |
| # "removed and `position_embeddings` will be mandatory." | |
| # ) | |
| cos, sin = self.rotary_emb(value_states, position_ids) | |
| else: | |
| cos, sin = position_embeddings | |
| query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | |
| if past_key_value is not None: | |
| cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models | |
| key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
| # repeat k/v heads if n_kv_heads < n_heads | |
| key_states = repeat_kv(key_states, self.num_key_value_groups) | |
| value_states = repeat_kv(value_states, self.num_key_value_groups) | |
| attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | |
| if attention_mask is not None: # no matter the length, we just slice it | |
| causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | |
| attn_weights = attn_weights + causal_mask | |
| # upcast attention to fp32 | |
| attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | |
| attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) | |
| attn_output = torch.matmul(attn_weights, value_states) | |
| if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | |
| raise ValueError( | |
| f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | |
| f" {attn_output.size()}" | |
| ) | |
| attn_output = attn_output.transpose(1, 2).contiguous() | |
| attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | |
| attn_output = self.o_proj(attn_output) | |
| if not output_attentions: | |
| attn_weights = None | |
| return attn_output, attn_weights, past_key_value | |
| class Qwen2FlashAttention2(Qwen2Attention): | |
| """ | |
| Qwen2 flash attention module, following Qwen2 attention module. This module inherits from `Qwen2Attention` | |
| as the weights of the module stays untouched. The only required change would be on the forward pass | |
| where it needs to correctly call the public API of flash attention and deal with padding tokens | |
| in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom | |
| config.max_window_layers layers. | |
| """ | |
| # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ | |
| def __init__(self, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. | |
| # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. | |
| # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). | |
| self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_value: Optional[Cache] = None, | |
| output_attentions: bool = False, | |
| use_cache: bool = False, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46 | |
| ): | |
| bsz, q_len, _ = hidden_states.size() | |
| query_states = self.q_proj(hidden_states) | |
| key_states = self.k_proj(hidden_states) | |
| value_states = self.v_proj(hidden_states) | |
| query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
| key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| if position_embeddings is None: | |
| # logger.warning_once( | |
| # "The attention layers in this model are transitioning from computing the RoPE embeddings internally " | |
| # "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed " | |
| # "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be " | |
| # "removed and `position_embeddings` will be mandatory." | |
| # ) | |
| cos, sin = self.rotary_emb(value_states, position_ids) | |
| else: | |
| cos, sin = position_embeddings | |
| query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | |
| if past_key_value is not None: | |
| # Activate slicing cache only if the config has a value `sliding_windows` attribute | |
| cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0 | |
| kv_seq_len = key_states.shape[-2] + cache_position[0] | |
| if ( | |
| getattr(self.config, "sliding_window", None) is not None | |
| and kv_seq_len > self.config.sliding_window | |
| and cache_has_contents | |
| ): | |
| slicing_tokens = 1 - self.config.sliding_window | |
| past_key = past_key_value[self.layer_idx][0] | |
| past_value = past_key_value[self.layer_idx][1] | |
| past_key = past_key[:, :, slicing_tokens:, :].contiguous() | |
| past_value = past_value[:, :, slicing_tokens:, :].contiguous() | |
| if past_key.shape[-2] != self.config.sliding_window - 1: | |
| raise ValueError( | |
| f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got" | |
| f" {past_key.shape}" | |
| ) | |
| if attention_mask is not None: | |
| attention_mask = attention_mask[:, slicing_tokens:] | |
| attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1) | |
| cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models | |
| key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
| # repeat k/v heads if n_kv_heads < n_heads | |
| key_states = repeat_kv(key_states, self.num_key_value_groups) | |
| value_states = repeat_kv(value_states, self.num_key_value_groups) | |
| dropout_rate = 0.0 if not self.training else self.attention_dropout | |
| # In PEFT, usually we cast the layer norms in float32 for training stability reasons | |
| # therefore the input hidden states gets silently casted in float32. Hence, we need | |
| # cast them back in float16 just to be sure everything works as expected. | |
| input_dtype = query_states.dtype | |
| if input_dtype == torch.float32: | |
| if torch.is_autocast_enabled(): | |
| target_dtype = torch.get_autocast_gpu_dtype() | |
| # Handle the case where the model is quantized | |
| elif hasattr(self.config, "_pre_quantization_dtype"): | |
| target_dtype = self.config._pre_quantization_dtype | |
| else: | |
| target_dtype = self.q_proj.weight.dtype | |
| # logger.warning_once( | |
| # f"The input hidden states seems to be silently casted in float32, this might be related to" | |
| # f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | |
| # f" {target_dtype}." | |
| # ) | |
| query_states = query_states.to(target_dtype) | |
| key_states = key_states.to(target_dtype) | |
| value_states = value_states.to(target_dtype) | |
| # Reashape to the expected shape for Flash Attention | |
| query_states = query_states.transpose(1, 2) | |
| key_states = key_states.transpose(1, 2) | |
| value_states = value_states.transpose(1, 2) | |
| if ( | |
| self.config.use_sliding_window | |
| and getattr(self.config, "sliding_window", None) is not None | |
| and self.layer_idx >= self.config.max_window_layers | |
| ): | |
| sliding_window = self.config.sliding_window | |
| else: | |
| sliding_window = None | |
| attn_output = _flash_attention_forward( | |
| query_states, | |
| key_states, | |
| value_states, | |
| attention_mask, | |
| q_len, | |
| position_ids=position_ids, | |
| dropout=dropout_rate, | |
| sliding_window=sliding_window, | |
| is_causal=self.is_causal, | |
| use_top_left_mask=self._flash_attn_uses_top_left_mask, | |
| ) | |
| attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() | |
| attn_output = self.o_proj(attn_output) | |
| if not output_attentions: | |
| attn_weights = None | |
| return attn_output, attn_weights, past_key_value | |
| class Qwen2HybridFlashAttention2(Qwen2FlashAttention2): | |
| """ | |
| Qwen2 flash attention module, following Qwen2 attention module. This module inherits from `Qwen2Attention` | |
| as the weights of the module stays untouched. The only required change would be on the forward pass | |
| where it needs to correctly call the public API of flash attention and deal with padding tokens | |
| in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom | |
| config.max_window_layers layers. | |
| """ | |
| # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ | |
| def __init__(self, | |
| is_hyper_enabled, | |
| gating_type, | |
| cross_attn_implementation, | |
| *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. | |
| # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. | |
| # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). | |
| self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | |
| self.is_hyper_enabled = is_hyper_enabled | |
| if self.is_hyper_enabled: | |
| self.gating_type = gating_type | |
| self.cross_attention_implementation = cross_attn_implementation | |
| self.cross_attn_kv_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim * 2, bias=True) | |
| if gating_type.startswith("whole-dynamic"): | |
| if "tanh" in gating_type: | |
| self.cross_attn_gate_proj = nn.Sequential( | |
| nn.Linear(self.hidden_size, 1), | |
| nn.Tanh() | |
| ) | |
| else: | |
| self.cross_attn_gate_proj = nn.Sequential( | |
| nn.Linear(self.hidden_size, 1), | |
| ) | |
| if gating_type.endswith("warmup"): | |
| self.cross_attn_warm_up_gate = torch.nn.Parameter(torch.zeros(1)) | |
| if "flashattn" in self.cross_attention_implementation: | |
| self.cross_attn_core_attention = FlashAttnCrossAttention(layer_number=-1, attention_dropout=self.attention_dropout) | |
| else: | |
| self.cross_attn_core_attention = ScaleDotProductCrossAttention(layer_number=-1, attention_dropout=self.attention_dropout) | |
| def all2media_cross_attn(self, | |
| text_state, | |
| text_query, | |
| vision_features, | |
| text2vision_cross_attn_mask=None, | |
| all_text_mask=None): | |
| ''' | |
| text_query: [s b h d] | |
| text_state: s b d | |
| vision_features: [num_vis, b, d] | |
| ''' | |
| if vision_features is None or (self.is_hyper_enabled == False): | |
| return text_state | |
| L_c, B_c = text_state.shape[:2] | |
| D_head = self.head_dim | |
| if "whole-dynamic" in self.gating_type: | |
| gate_value = self.cross_attn_gate_proj(text_state) # n, bs, head_D | |
| if "warmup" in self.gating_type: | |
| gate_value = gate_value * self.cross_attn_warm_up_gate | |
| vision_features = vision_features.contiguous() | |
| vision_features = self.cross_attn_kv_proj(vision_features) | |
| text_query = rearrange(text_query, 'L B H D -> B H L D') # [25, 2, 32, 128]) | |
| vision_kv = rearrange(vision_features, 'BL Lv (H KV D) -> KV BL H Lv D', KV=2, H=self.num_key_value_heads) | |
| vision_key = vision_kv[0].contiguous() # [b h s d] | |
| vision_value = vision_kv[1].contiguous() | |
| vision_key = repeat_kv(vision_key, self.num_key_value_groups) | |
| vision_value = repeat_kv(vision_value, self.num_key_value_groups) | |
| # expend_cross_attn_mask | |
| attention_mask = text2vision_cross_attn_mask[:, None, :].repeat(1, text_state.shape[0], 1) | |
| vision_context = self.cross_attn_core_attention(text_query, vision_key, vision_value, attn_mask=attention_mask).transpose(0, 1) | |
| # mask out the output if a sample is pure text | |
| vision_context = all_text_mask[None, :, None] * vision_context | |
| # Apply dynamic gate | |
| text_state = text_state + vision_context * gate_value | |
| return text_state | |
| def onlytext2media_cross_attn(self, | |
| text_state, | |
| text_query, | |
| vision_features, | |
| token_type, | |
| text2vision_cross_attn_mask=None, | |
| all_text_mask=None): | |
| ''' | |
| text_query: [bs n h d] | |
| text_state: [bs n d] | |
| vision_features: [bs, vis_n, d] | |
| token_type: [bs, n] | |
| ''' | |
| # if vision_features is None or (self.is_hyper_enabled == False) or (all_text_mask.sum() == 0): | |
| if vision_features is None or (self.is_hyper_enabled == False): | |
| return text_state | |
| # select all the pure text token | |
| pure_text_query = [] | |
| text_mask = ((token_type - 2) <= 0).bool() | |
| if "masksystem" in self.cross_attention_implementation: | |
| new_text_masks = [] | |
| for idx, text_query_ in enumerate(text_query): | |
| # mask out all the tokens before the media | |
| first_im_token = (token_type[idx] == 3).nonzero() | |
| if len(first_im_token) == 0: | |
| start = 0 | |
| else: | |
| start = first_im_token[0] | |
| text_mask_ = text_mask[idx].clone() | |
| text_mask_[:start] = False | |
| pure_text_query.append(text_query_[text_mask_]) | |
| new_text_masks.append(text_mask_) | |
| text_mask = torch.stack(new_text_masks, dim=0) | |
| else: | |
| for idx, text_query_ in enumerate(text_query): | |
| pure_text_query.append(text_query_[text_mask[idx]]) | |
| # 2. pad all the text tokens | |
| text_query = torch.nn.utils.rnn.pad_sequence(pure_text_query, batch_first=True) | |
| padding_attn_mask = torch.ones(text_query.shape[:-2], dtype=torch.bool, device=text_state.device) | |
| for i, tensor in enumerate(pure_text_query): | |
| padding_attn_mask[i, len(tensor):] = False # Mark padded elements as False | |
| B_c, L_c = text_query.shape[:2] | |
| D_head = self.head_dim | |
| # obtain dynamic gate value | |
| gate_value = self.cross_attn_gate_proj(text_state[text_mask]) # n, D | |
| if "warmup" in self.gating_type: | |
| gate_value = gate_value * self.cross_attn_warm_up_gate.tanh() | |
| vision_features = vision_features.contiguous() | |
| vision_features = self.cross_attn_kv_proj(vision_features) | |
| text_query = text_query.transpose(1, 2) | |
| vision_kv = rearrange(vision_features, 'BL Lv (H KV D) -> KV BL H Lv D', KV=2, H=self.num_key_value_heads) | |
| vision_key = vision_kv[0].contiguous() # [b h s d] | |
| vision_value = vision_kv[1].contiguous() | |
| vision_key = repeat_kv(vision_key, self.num_key_value_groups) | |
| vision_value = repeat_kv(vision_value, self.num_key_value_groups) | |
| # expend_cross_attn_mask | |
| attention_mask = text2vision_cross_attn_mask[:, None, :].repeat(1, text_query.shape[2], 1) | |
| vision_context = self.cross_attn_core_attention(text_query, vision_key, vision_value, attn_mask=attention_mask) | |
| # mask out the output if a sample is pure text | |
| vision_context = all_text_mask[:, None, None] * vision_context | |
| # Apply dynamic gate | |
| extended_attn_output = torch.zeros_like(text_state, dtype=text_state.dtype, device=text_state.device) | |
| extended_attn_output[text_mask] = extended_attn_output[text_mask] + vision_context[padding_attn_mask] * gate_value | |
| text_state = text_state + extended_attn_output | |
| # NOTE Min: just equvalent to the following line. Avoid error under deepspeed zero3 | |
| # text_state[text_mask] = text_state[text_mask] + vision_context[padding_attn_mask] * gate_value | |
| return text_state | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| visual_hidden_states: torch.Tensor, | |
| token_type: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| text2visual_attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_value: Optional[Cache] = None, | |
| output_attentions: bool = False, | |
| use_cache: bool = False, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46 | |
| ): | |
| bsz, q_len, _ = hidden_states.size() | |
| query_states = self.q_proj(hidden_states) | |
| key_states = self.k_proj(hidden_states) | |
| value_states = self.v_proj(hidden_states) | |
| query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
| key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| if position_embeddings is None: | |
| # logger.warning_once( | |
| # "The attention layers in this model are transitioning from computing the RoPE embeddings internally " | |
| # "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed " | |
| # "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be " | |
| # "removed and `position_embeddings` will be mandatory." | |
| # ) | |
| cos, sin = self.rotary_emb(value_states, position_ids) | |
| else: | |
| cos, sin = position_embeddings | |
| query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | |
| if past_key_value is not None: | |
| # Activate slicing cache only if the config has a value `sliding_windows` attribute | |
| cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0 | |
| kv_seq_len = key_states.shape[-2] + cache_position[0] | |
| if ( | |
| getattr(self.config, "sliding_window", None) is not None | |
| and kv_seq_len > self.config.sliding_window | |
| and cache_has_contents | |
| ): | |
| slicing_tokens = 1 - self.config.sliding_window | |
| past_key = past_key_value[self.layer_idx][0] | |
| past_value = past_key_value[self.layer_idx][1] | |
| past_key = past_key[:, :, slicing_tokens:, :].contiguous() | |
| past_value = past_value[:, :, slicing_tokens:, :].contiguous() | |
| if past_key.shape[-2] != self.config.sliding_window - 1: | |
| raise ValueError( | |
| f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got" | |
| f" {past_key.shape}" | |
| ) | |
| if attention_mask is not None: | |
| attention_mask = attention_mask[:, slicing_tokens:] | |
| attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1) | |
| cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models | |
| key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
| # repeat k/v heads if n_kv_heads < n_heads | |
| key_states = repeat_kv(key_states, self.num_key_value_groups) | |
| value_states = repeat_kv(value_states, self.num_key_value_groups) | |
| dropout_rate = 0.0 if not self.training else self.attention_dropout | |
| # In PEFT, usually we cast the layer norms in float32 for training stability reasons | |
| # therefore the input hidden states gets silently casted in float32. Hence, we need | |
| # cast them back in float16 just to be sure everything works as expected. | |
| input_dtype = query_states.dtype | |
| if input_dtype == torch.float32: | |
| if torch.is_autocast_enabled(): | |
| target_dtype = torch.get_autocast_gpu_dtype() | |
| # Handle the case where the model is quantized | |
| elif hasattr(self.config, "_pre_quantization_dtype"): | |
| target_dtype = self.config._pre_quantization_dtype | |
| else: | |
| target_dtype = self.q_proj.weight.dtype | |
| # logger.warning_once( | |
| # f"The input hidden states seems to be silently casted in float32, this might be related to" | |
| # f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | |
| # f" {target_dtype}." | |
| # ) | |
| query_states = query_states.to(target_dtype) | |
| key_states = key_states.to(target_dtype) | |
| value_states = value_states.to(target_dtype) | |
| # Reashape to the expected shape for Flash Attention | |
| query_states = query_states.transpose(1, 2) | |
| key_states = key_states.transpose(1, 2) | |
| value_states = value_states.transpose(1, 2) | |
| if ( | |
| self.config.use_sliding_window | |
| and getattr(self.config, "sliding_window", None) is not None | |
| and self.layer_idx >= self.config.max_window_layers | |
| ): | |
| sliding_window = self.config.sliding_window | |
| else: | |
| sliding_window = None | |
| attn_output = _flash_attention_forward( | |
| query_states, # bs, n, head, head_dim | |
| key_states, | |
| value_states, | |
| attention_mask, | |
| q_len, | |
| position_ids=position_ids, | |
| dropout=dropout_rate, | |
| sliding_window=sliding_window, | |
| is_causal=self.is_causal, | |
| use_top_left_mask=self._flash_attn_uses_top_left_mask, | |
| ) | |
| attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() | |
| # text-to-image cross-attention | |
| #### | |
| all_text_mask = (token_type == 3).sum(dim=-1).bool() # [bs, ] if False, indicate that this sample contains no image input | |
| if self.cross_attention_implementation.startswith("vanilla"): # all tokens can attend to the slow tokens | |
| attn_output = self.all2media_cross_attn(attn_output.permute(1, 0, 2), | |
| query_states.permute(1, 0, 2, 3), | |
| visual_hidden_states, | |
| text2visual_attention_mask, | |
| all_text_mask) | |
| attn_output = attn_output.permute(1,0,2) | |
| elif self.cross_attention_implementation.startswith("text-only-vanilla"): # only text tokens are allowed to attend the slow tokens | |
| attn_output = self.onlytext2media_cross_attn(attn_output, | |
| query_states, | |
| visual_hidden_states, | |
| token_type=token_type, | |
| text2vision_cross_attn_mask=text2visual_attention_mask, | |
| all_text_mask=all_text_mask | |
| ) | |
| else: | |
| raise NotImplementedError(f"cross-attention type {self.cross_attention_implementation} not implemented") | |
| #### | |
| attn_output = self.o_proj(attn_output) | |
| if not output_attentions: | |
| attn_weights = None | |
| return attn_output, attn_weights, past_key_value | |
| class Qwen2SdpaAttention(Qwen2Attention): | |
| """ | |
| Qwen2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from | |
| `Qwen2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to | |
| SDPA API. | |
| """ | |
| # Adapted from Qwen2Attention.forward | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_value: Optional[Cache] = None, | |
| output_attentions: bool = False, | |
| use_cache: bool = False, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46 | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
| if output_attentions: | |
| # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. | |
| # logger.warning_once( | |
| # "Qwen2Model is using Qwen2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " | |
| # 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' | |
| # ) | |
| return super().forward( | |
| hidden_states=hidden_states, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| past_key_value=past_key_value, | |
| output_attentions=output_attentions, | |
| use_cache=use_cache, | |
| ) | |
| bsz, q_len, _ = hidden_states.size() | |
| query_states = self.q_proj(hidden_states) | |
| key_states = self.k_proj(hidden_states) | |
| value_states = self.v_proj(hidden_states) | |
| query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
| key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| if position_embeddings is None: | |
| # logger.warning_once( | |
| # "The attention layers in this model are transitioning from computing the RoPE embeddings internally " | |
| # "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed " | |
| # "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be " | |
| # "removed and `position_embeddings` will be mandatory." | |
| # ) | |
| cos, sin = self.rotary_emb(value_states, position_ids) | |
| else: | |
| cos, sin = position_embeddings | |
| query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | |
| if past_key_value is not None: | |
| cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models | |
| key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
| key_states = repeat_kv(key_states, self.num_key_value_groups) | |
| value_states = repeat_kv(value_states, self.num_key_value_groups) | |
| causal_mask = attention_mask | |
| if attention_mask is not None: # no matter the length, we just slice it | |
| causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | |
| # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, | |
| # Reference: https://github.com/pytorch/pytorch/issues/112577. | |
| if query_states.device.type == "cuda" and attention_mask is not None: | |
| query_states = query_states.contiguous() | |
| key_states = key_states.contiguous() | |
| value_states = value_states.contiguous() | |
| # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment | |
| # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. | |
| # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1. | |
| is_causal = True if causal_mask is None and q_len > 1 else False | |
| attn_output = torch.nn.functional.scaled_dot_product_attention( | |
| query_states, | |
| key_states, | |
| value_states, | |
| attn_mask=causal_mask, | |
| dropout_p=self.attention_dropout if self.training else 0.0, | |
| is_causal=is_causal, | |
| ) | |
| attn_output = attn_output.transpose(1, 2).contiguous() | |
| attn_output = attn_output.view(bsz, q_len, self.hidden_size) | |
| attn_output = self.o_proj(attn_output) | |
| return attn_output, None, past_key_value | |
| # TODO: Min: Not implementated yet | |
| class Qwen2HybridSdpaAttention(Qwen2SdpaAttention): | |
| """ | |
| Qwen2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from | |
| `Qwen2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to | |
| SDPA API. | |
| """ | |
| def __init__(self, | |
| is_hyper_enabled, | |
| gating_type, | |
| cross_attn_implementation, | |
| *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| self.is_hyper_enabled = is_hyper_enabled | |
| if self.is_hyper_enabled: | |
| self.gating_type = gating_type | |
| self.cross_attention_implementation = cross_attn_implementation | |
| self.cross_attn_kv_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim * 2, bias=True) | |
| if gating_type.startswith("whole-dynamic"): | |
| if "tanh" in gating_type: | |
| self.cross_attn_gate_proj = nn.Sequential( | |
| nn.Linear(self.hidden_size, 1), | |
| nn.Tanh() | |
| ) | |
| else: | |
| self.cross_attn_gate_proj = nn.Sequential( | |
| nn.Linear(self.hidden_size, 1), | |
| ) | |
| if gating_type.endswith("warmup"): | |
| self.cross_attn_warm_up_gate = torch.nn.Parameter(torch.zeros(1)) | |
| if "flashattn" in self.cross_attention_implementation: | |
| self.cross_attn_core_attention = FlashAttnCrossAttention(layer_number=-1, attention_dropout=self.attention_dropout) | |
| else: | |
| self.cross_attn_core_attention = ScaleDotProductCrossAttention(layer_number=-1, attention_dropout=self.attention_dropout) | |
| def text2media_cross_attn(self, | |
| text_state, | |
| text_query, | |
| vision_features, | |
| text2vision_cross_attn_mask=None, | |
| all_text_mask=None): | |
| ''' | |
| text_query: [s b h d] | |
| text_state: s b d | |
| vision_features: [num_vis, b, d] | |
| ''' | |
| if vision_features is None or (self.is_hyper_enabled == False): | |
| return text_state | |
| # obtain dynamic gate value | |
| L_c, B_c = text_state.shape[:2] | |
| D_head = self.head_dim | |
| gate_value = rearrange( | |
| self.gate_proj( | |
| rearrange(text_state, 'L B (Head D) -> (L B Head) D', D=D_head)), | |
| '(L B Head) D -> L B (Head D)', L=L_c, B=B_c) | |
| vision_features = vision_features.contiguous() | |
| vision_features = self.v_kv_proj(vision_features) | |
| # length_each_img = vision_features.shape[1] | |
| # sequence_length = text_query.shape[0] | |
| query_layer = rearrange(query_layer, 'L B H D -> B H L D') # [25, 2, 32, 128]) | |
| vision_kv = rearrange(vision_features, 'BL Lv (H KV D) -> KV 1 H (BL Lv) D', KV=2, H=self.num_key_value_heads) | |
| vision_key = vision_kv[0].contiguous() # [b h s d] | |
| vision_value = vision_kv[1].contiguous() | |
| # Apply MI-Rope | |
| # key_layer = self.apply_mi_rope(key_layer, media_offset_line=self.visual_cache['media_offset'][batch_id,:,1]-curr_offset[0], length_each_img=length_each_img) | |
| key_layer = repeat_kv(key_layer, self.num_key_value_groups) | |
| value_layer = repeat_kv(value_layer, self.num_key_value_groups) | |
| vision_context = self.v_core_attention_sdpa(query_layer, vision_key, vision_value, attn_mask=None, order='bhsd').squeeze(1) # TODO | |
| # Apply dynamic gate | |
| text_state = text_state * (1 - gate_value) + vision_context * gate_value | |
| return text_state | |
| # Adapted from Qwen2Attention.forward | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| visual_hidden_states: torch.Tensor, | |
| token_type: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| text2visual_attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_value: Optional[Cache] = None, | |
| output_attentions: bool = False, | |
| use_cache: bool = False, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46 | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
| if output_attentions: | |
| # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. | |
| # logger.warning_once( | |
| # "Qwen2Model is using Qwen2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " | |
| # 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' | |
| # ) | |
| return super().forward( | |
| hidden_states=hidden_states, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| past_key_value=past_key_value, | |
| output_attentions=output_attentions, | |
| use_cache=use_cache, | |
| ) | |
| bsz, q_len, _ = hidden_states.size() | |
| query_states = self.q_proj(hidden_states) | |
| key_states = self.k_proj(hidden_states) | |
| value_states = self.v_proj(hidden_states) | |
| query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
| key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| if position_embeddings is None: | |
| # logger.warning_once( | |
| # "The attention layers in this model are transitioning from computing the RoPE embeddings internally " | |
| # "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed " | |
| # "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be " | |
| # "removed and `position_embeddings` will be mandatory." | |
| # ) | |
| cos, sin = self.rotary_emb(value_states, position_ids) | |
| else: | |
| cos, sin = position_embeddings | |
| query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | |
| if past_key_value is not None: | |
| cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models | |
| key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
| key_states = repeat_kv(key_states, self.num_key_value_groups) | |
| value_states = repeat_kv(value_states, self.num_key_value_groups) | |
| causal_mask = attention_mask | |
| if attention_mask is not None: # no matter the length, we just slice it | |
| causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | |
| # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, | |
| # Reference: https://github.com/pytorch/pytorch/issues/112577. | |
| if query_states.device.type == "cuda" and attention_mask is not None: | |
| query_states = query_states.contiguous() | |
| key_states = key_states.contiguous() | |
| value_states = value_states.contiguous() | |
| # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment | |
| # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. | |
| # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1. | |
| is_causal = True if causal_mask is None and q_len > 1 else False | |
| attn_output = torch.nn.functional.scaled_dot_product_attention( | |
| query_states, | |
| key_states, | |
| value_states, | |
| attn_mask=causal_mask, | |
| dropout_p=self.attention_dropout if self.training else 0.0, | |
| is_causal=is_causal, | |
| ) | |
| attn_output = attn_output.transpose(1, 2).contiguous() | |
| attn_output = attn_output.view(bsz, q_len, self.hidden_size) | |
| # text-to-image cross-attention | |
| #### | |
| all_text_mask = (token_type == 3).sum(dim=-1).bool() # [bs, ] if False, indicate that this sample contains no image input | |
| if self.cross_attention_implementation.startswith("vanilla"): | |
| attn_output = self.text2media_cross_attn(attn_output.permute(1, 0, 2), | |
| query_states.permute(1, 0, 2, 3), | |
| visual_hidden_states, | |
| text2visual_attention_mask, | |
| all_text_mask) | |
| attn_output = attn_output.permute(1,0,2) | |
| elif self.cross_attention_implementation.startswith("text-only-vanilla"): | |
| attn_output = self.onlytext2media_cross_attn(attn_output, | |
| query_states, | |
| visual_hidden_states, | |
| token_type=token_type, | |
| text2vision_cross_attn_mask=text2visual_attention_mask, | |
| all_text_mask=all_text_mask | |
| ) | |
| else: | |
| raise NotImplementedError(f"cross-attention type {self.cross_attention_implementation} not implemented") | |
| #### | |
| attn_output = self.o_proj(attn_output) | |
| return attn_output, None, past_key_value | |
| QWEN2_ATTENTION_CLASSES = { | |
| "eager": Qwen2Attention, | |
| "flash_attention_2": Qwen2FlashAttention2, | |
| "sdpa": Qwen2SdpaAttention, | |
| } | |
| QWEN2_HYBRID_ATTENTION_CLASSES = { | |
| "flash_attention_2": Qwen2HybridFlashAttention2, | |
| "sdpa": Qwen2HybridSdpaAttention, # Not implemented yet, only support flash attn | |
| } | |
| class Qwen2DecoderLayer(nn.Module): | |
| def __init__(self, config, layer_idx: int): | |
| super().__init__() | |
| self.hidden_size = config.hidden_size | |
| if config.sliding_window and config._attn_implementation != "flash_attention_2": | |
| # logger.warning_once( | |
| # f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; " | |
| # "unexpected results may be encountered." | |
| # ) | |
| pass | |
| self.self_attn = QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) | |
| self.mlp = Qwen2MLP(config) | |
| self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
| self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
| output_attentions: Optional[bool] = False, | |
| use_cache: Optional[bool] = False, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46 | |
| **kwargs, | |
| ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | |
| """ | |
| Args: | |
| hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
| attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | |
| `(batch, sequence_length)` where padding elements are indicated by 0. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
| returned tensors for more detail. | |
| use_cache (`bool`, *optional*): | |
| If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | |
| (see `past_key_values`). | |
| past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | |
| cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): | |
| Indices depicting the position of the input sequence tokens in the sequence. | |
| position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): | |
| Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, | |
| with `head_dim` being the embedding dimension of each attention head. | |
| kwargs (`dict`, *optional*): | |
| Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code | |
| into the model | |
| """ | |
| residual = hidden_states | |
| hidden_states = self.input_layernorm(hidden_states) | |
| # Self Attention | |
| hidden_states, self_attn_weights, present_key_value = self.self_attn( | |
| hidden_states=hidden_states, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| past_key_value=past_key_value, | |
| output_attentions=output_attentions, | |
| use_cache=use_cache, | |
| cache_position=cache_position, | |
| position_embeddings=position_embeddings, | |
| ) | |
| hidden_states = residual + hidden_states | |
| # Fully Connected | |
| residual = hidden_states | |
| hidden_states = self.post_attention_layernorm(hidden_states) | |
| hidden_states = self.mlp(hidden_states) | |
| hidden_states = residual + hidden_states | |
| outputs = (hidden_states,) | |
| if output_attentions: | |
| outputs += (self_attn_weights,) | |
| if use_cache: | |
| outputs += (present_key_value,) | |
| return outputs | |
| class Qwen2HybridDecoderLayer(nn.Module): | |
| def __init__(self, | |
| config, | |
| layer_idx: int, | |
| is_hyper_enabled=False, | |
| cross_attn_implementation="vanilla", # in ['vanilla' and 'text-only-vanilla'] | |
| cross_attn_gating_type="channel-wise-dynamic-sigmoid"): | |
| super().__init__() | |
| self.is_hyper_enabled = is_hyper_enabled | |
| self.hidden_size = config.hidden_size | |
| if config.sliding_window and config._attn_implementation != "flash_attention_2": | |
| # logger.warning_once( | |
| # f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; " | |
| # "unexpected results may be encountered." | |
| # ) | |
| pass | |
| self.self_attn = QWEN2_HYBRID_ATTENTION_CLASSES[config._attn_implementation](config=config, | |
| layer_idx=layer_idx, | |
| is_hyper_enabled=is_hyper_enabled, | |
| cross_attn_implementation=cross_attn_implementation, | |
| gating_type=cross_attn_gating_type) | |
| self.mlp = Qwen2MLP(config) | |
| self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
| self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
| self.gradient_checkpointing = False # move the gradient checkpointing to the forward function of attn and MLP | |
| # Used this great idea from this implementation of Flamingo (https://github.com/dhansmair/flamingo-mini/) | |
| def condition_vis_x(self, | |
| vis_x, | |
| cross_attn_mask=None, | |
| token_type=None): | |
| self.vis_x = vis_x | |
| self.cross_attn_mask = cross_attn_mask | |
| self.media_locations = token_type | |
| def clear_vis_x(self): | |
| self.vis_x = None | |
| self.cross_attn_mask = None | |
| self.media_locations = None | |
| def mlp_forward(self, hidden_states): | |
| hidden_states = self.post_attention_layernorm(hidden_states) | |
| hidden_states = self.mlp(hidden_states) | |
| return hidden_states | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
| output_attentions: Optional[bool] = False, | |
| use_cache: Optional[bool] = False, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46 | |
| **kwargs, | |
| ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | |
| """ | |
| Args: | |
| hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
| attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | |
| `(batch, sequence_length)` where padding elements are indicated by 0. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
| returned tensors for more detail. | |
| use_cache (`bool`, *optional*): | |
| If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | |
| (see `past_key_values`). | |
| past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | |
| cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): | |
| Indices depicting the position of the input sequence tokens in the sequence. | |
| position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): | |
| Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, | |
| with `head_dim` being the embedding dimension of each attention head. | |
| kwargs (`dict`, *optional*): | |
| Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code | |
| into the model | |
| """ | |
| residual = hidden_states | |
| hidden_states = self.input_layernorm(hidden_states) | |
| # process image embedding | |
| visual_tokens = self.vis_x | |
| cross_attn_mask = self.cross_attn_mask | |
| token_type = self.media_locations | |
| visual_tokens = self.input_layernorm(visual_tokens) | |
| # Self Attention | |
| if self.gradient_checkpointing and self.training: | |
| hidden_states, self_attn_weights, present_key_value = torch.utils.checkpoint.checkpoint( | |
| self.self_attn, | |
| hidden_states, | |
| visual_tokens, | |
| token_type, | |
| attention_mask, | |
| cross_attn_mask, | |
| position_ids, | |
| past_key_value, | |
| output_attentions, | |
| use_cache, | |
| cache_position, | |
| position_embeddings | |
| ) | |
| else: | |
| hidden_states, self_attn_weights, present_key_value = self.self_attn( | |
| hidden_states=hidden_states, | |
| attention_mask=attention_mask, | |
| visual_hidden_states=visual_tokens, | |
| text2visual_attention_mask=cross_attn_mask, | |
| token_type=token_type, | |
| position_ids=position_ids, | |
| past_key_value=past_key_value, | |
| output_attentions=output_attentions, | |
| use_cache=use_cache, | |
| cache_position=cache_position, | |
| position_embeddings=position_embeddings, | |
| ) | |
| hidden_states = residual + hidden_states | |
| # Fully Connected | |
| residual = hidden_states | |
| if self.gradient_checkpointing and self.training: | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| self.mlp_forward, | |
| hidden_states) | |
| else: | |
| hidden_states = self.mlp_forward(hidden_states) | |
| hidden_states = residual + hidden_states | |
| outputs = (hidden_states,) | |
| if output_attentions: | |
| outputs += (self_attn_weights,) | |
| if use_cache: | |
| outputs += (present_key_value,) | |
| return outputs | |