Spaces:
Runtime error
Runtime error
| # This file is modified from https://github.com/haotian-liu/LLaVA/ | |
| import datetime | |
| import time | |
| import logging | |
| import logging.handlers | |
| import os | |
| import sys | |
| import requests | |
| import torch | |
| import transformers | |
| from transformers.integrations import is_deepspeed_zero3_enabled | |
| from llava.constants import LOGDIR | |
| server_error_msg = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**" | |
| moderation_msg = "YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES. PLEASE TRY AGAIN." | |
| handler = None | |
| def build_logger(logger_name, logger_filename): | |
| global handler | |
| formatter = logging.Formatter( | |
| fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s", | |
| datefmt="%Y-%m-%d %H:%M:%S", | |
| ) | |
| # Set the format of root handlers | |
| if not logging.getLogger().handlers: | |
| logging.basicConfig(level=logging.INFO) | |
| logging.getLogger().handlers[0].setFormatter(formatter) | |
| # Redirect stdout and stderr to loggers | |
| stdout_logger = logging.getLogger("stdout") | |
| stdout_logger.setLevel(logging.INFO) | |
| sl = StreamToLogger(stdout_logger, logging.INFO) | |
| sys.stdout = sl | |
| stderr_logger = logging.getLogger("stderr") | |
| stderr_logger.setLevel(logging.ERROR) | |
| sl = StreamToLogger(stderr_logger, logging.ERROR) | |
| sys.stderr = sl | |
| # Get logger | |
| logger = logging.getLogger(logger_name) | |
| logger.setLevel(logging.INFO) | |
| # Add a file handler for all loggers | |
| if handler is None: | |
| os.makedirs(LOGDIR, exist_ok=True) | |
| filename = os.path.join(LOGDIR, logger_filename) | |
| handler = logging.handlers.TimedRotatingFileHandler( | |
| filename, when='D', utc=True, encoding='UTF-8') | |
| handler.setFormatter(formatter) | |
| for name, item in logging.root.manager.loggerDict.items(): | |
| if isinstance(item, logging.Logger): | |
| item.addHandler(handler) | |
| return logger | |
| class StreamToLogger(object): | |
| """ | |
| Fake file-like stream object that redirects writes to a logger instance. | |
| """ | |
| def __init__(self, logger, log_level=logging.INFO): | |
| self.terminal = sys.stdout | |
| self.logger = logger | |
| self.log_level = log_level | |
| self.linebuf = '' | |
| def __getattr__(self, attr): | |
| return getattr(self.terminal, attr) | |
| def write(self, buf): | |
| temp_linebuf = self.linebuf + buf | |
| self.linebuf = '' | |
| for line in temp_linebuf.splitlines(True): | |
| # From the io.TextIOWrapper docs: | |
| # On output, if newline is None, any '\n' characters written | |
| # are translated to the system default line separator. | |
| # By default sys.stdout.write() expects '\n' newlines and then | |
| # translates them so this is still cross platform. | |
| if line[-1] == '\n': | |
| self.logger.log(self.log_level, line.rstrip()) | |
| else: | |
| self.linebuf += line | |
| def flush(self): | |
| if self.linebuf != '': | |
| self.logger.log(self.log_level, self.linebuf.rstrip()) | |
| self.linebuf = '' | |
| def disable_torch_init(): | |
| """ | |
| Disable the redundant torch default initialization to accelerate model creation. | |
| """ | |
| import torch | |
| setattr(torch.nn.Linear, "reset_parameters", lambda self: None) | |
| setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None) | |
| def violates_moderation(text): | |
| """ | |
| Check whether the text violates OpenAI moderation API. | |
| """ | |
| url = "https://api.openai.com/v1/moderations" | |
| headers = {"Content-Type": "application/json", | |
| "Authorization": "Bearer " + os.environ["OPENAI_API_KEY"]} | |
| text = text.replace("\n", "") | |
| data = "{" + '"input": ' + f'"{text}"' + "}" | |
| data = data.encode("utf-8") | |
| try: | |
| ret = requests.post(url, headers=headers, data=data, timeout=5) | |
| flagged = ret.json()["results"][0]["flagged"] | |
| except requests.exceptions.RequestException as e: | |
| flagged = False | |
| except KeyError as e: | |
| flagged = False | |
| return flagged | |
| def pretty_print_semaphore(semaphore): | |
| if semaphore is None: | |
| return "None" | |
| return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})" | |
| def load_state_dict_into_model(model_to_load, state_dict, start_prefix=""): | |
| # copied and altered from: | |
| # https://github.com/huggingface/transformers/blob/9d35edbb30625489bf286a9b15aed0c5a3119c1c/src/transformers/modeling_utils.py#L650 | |
| # https://github.com/baaivision/EVA/blob/2ca37a8c0d82b9496754f3fa9c3966b4caa54d75/EVA-CLIP-18B/shinji/eva_clip/factory.py#L168 | |
| # copy state_dict so _load_from_state_dict can modify it | |
| metadata = getattr(state_dict, "_metadata", None) | |
| state_dict = state_dict.copy() | |
| if metadata is not None: | |
| state_dict._metadata = metadata | |
| error_msgs = [] | |
| # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants | |
| # so we need to apply the function recursively. | |
| def load(module: torch.nn.Module, prefix=""): | |
| local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) | |
| args = (state_dict, prefix, local_metadata, True, [], [], error_msgs) | |
| # Parameters of module and children will start with prefix. We can exit early if there are none in this state_dict | |
| if is_deepspeed_zero3_enabled(): | |
| import deepspeed | |
| with deepspeed.zero.GatheredParameters(list(module.parameters(recurse=False)), modifier_rank=0): | |
| if torch.distributed.get_rank() == 0: | |
| module._load_from_state_dict(*args) | |
| else: | |
| module._load_from_state_dict(*args) | |
| for name, child in module._modules.items(): | |
| if child is not None: | |
| load(child, prefix + name + ".") | |
| load(model_to_load, prefix=start_prefix) | |
| # Delete `state_dict` so it could be collected by GC earlier. Note that `state_dict` is a copy of the argument, so | |
| # it's safe to delete it. | |
| del state_dict | |
| return error_msgs | |
| class Timer: | |
| def __init__(self): | |
| self.start_time = None | |
| self.elapsed_time = 0 | |
| def start(self): | |
| self.start_time = time.time() | |
| def reset(self): | |
| self.start_time = None | |
| self.elapsed_time = 0 | |
| def get_elapsed_time(self): | |
| if self.start_time is not None: | |
| return self.elapsed_time + (time.time() - self.start_time) | |
| class TimeoutTerminateCallback(transformers.TrainerCallback): | |
| def __init__(self, args, total_time_limit=240, pre_terminate_time=10): | |
| self.training_args = args | |
| self.total_time_limit = total_time_limit | |
| self.pre_terminate_time = pre_terminate_time | |
| self.timer = Timer() | |
| self.timer.start() | |
| if args.local_rank == 0: | |
| print(f"Timer for terminate callback has been set.\nTotal limit: {total_time_limit}min\nPre terminate time: {pre_terminate_time}min") | |
| self.time_to_kill = (total_time_limit - pre_terminate_time) * 60 | |
| def on_step_end(self, args, state, control, model, **kwargs): | |
| elapsed_time = self.timer.get_elapsed_time() | |
| if elapsed_time > self.time_to_kill: | |
| if args.local_rank == 0: | |
| print("Timeout, start to save checkpoint....") | |
| control.should_save = True | |
| control.should_training_stop = True | |
| return control | |