Spaces:
Paused
Paused
use gpu only under decorated spaces.GPU
Browse files
app.py
CHANGED
|
@@ -68,7 +68,15 @@ MAX_PROMPT_TOKENS = 256
|
|
| 68 |
|
| 69 |
|
| 70 |
@spaces.GPU
|
| 71 |
-
def completion(prompt: str,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
# tokenize
|
| 73 |
input_ids = tokenizer.apply_chat_template(
|
| 74 |
[
|
|
@@ -93,6 +101,12 @@ def completion(prompt: str, model, tokenizer):
|
|
| 93 |
top_p=None,
|
| 94 |
temperature=None,
|
| 95 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
return tokenizer.decode(outputs[0][input_ids.shape[-1] :], skip_special_tokens=True)
|
| 97 |
|
| 98 |
|
|
@@ -107,16 +121,6 @@ def completion_openrouter(prompt: str, model_id: str):
|
|
| 107 |
return resp.choices[0].message.content
|
| 108 |
|
| 109 |
|
| 110 |
-
# @functools.cache
|
| 111 |
-
def load_model_and_tokenizer(model_id: str):
|
| 112 |
-
logger.info(f"loading local model and tokenizer for {model_id}")
|
| 113 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 114 |
-
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float16
|
| 115 |
-
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype, device_map="auto")
|
| 116 |
-
logger.info(f"done loading {model_id}")
|
| 117 |
-
return model, tokenizer
|
| 118 |
-
|
| 119 |
-
|
| 120 |
def load_openrouter_client():
|
| 121 |
logger.info(f"connecting to OpenRouter")
|
| 122 |
return OpenAI(
|
|
@@ -135,13 +139,7 @@ def get_completion(*, prompt: str, model_id: str):
|
|
| 135 |
if model_id.startswith("api:"):
|
| 136 |
return completion_openrouter(prompt, model_id.removeprefix("api:"))
|
| 137 |
else:
|
| 138 |
-
|
| 139 |
-
resp = completion(prompt, model, tokenizer)
|
| 140 |
-
|
| 141 |
-
# cleanup memory
|
| 142 |
-
del model, tokenizer
|
| 143 |
-
torch.cuda.empty_cache()
|
| 144 |
-
gc.collect()
|
| 145 |
return resp
|
| 146 |
|
| 147 |
|
|
|
|
| 68 |
|
| 69 |
|
| 70 |
@spaces.GPU
|
| 71 |
+
def completion(prompt: str, model_id: str):
|
| 72 |
+
# load model and tokenizer
|
| 73 |
+
logger.info(f"loading local model and tokenizer for {model_id}")
|
| 74 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 75 |
+
|
| 76 |
+
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float16
|
| 77 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype, device_map="auto")
|
| 78 |
+
logger.info(f"done loading {model_id}")
|
| 79 |
+
|
| 80 |
# tokenize
|
| 81 |
input_ids = tokenizer.apply_chat_template(
|
| 82 |
[
|
|
|
|
| 101 |
top_p=None,
|
| 102 |
temperature=None,
|
| 103 |
)
|
| 104 |
+
|
| 105 |
+
# cleanup memory
|
| 106 |
+
del model, tokenizer
|
| 107 |
+
torch.cuda.empty_cache()
|
| 108 |
+
gc.collect()
|
| 109 |
+
|
| 110 |
return tokenizer.decode(outputs[0][input_ids.shape[-1] :], skip_special_tokens=True)
|
| 111 |
|
| 112 |
|
|
|
|
| 121 |
return resp.choices[0].message.content
|
| 122 |
|
| 123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
def load_openrouter_client():
|
| 125 |
logger.info(f"connecting to OpenRouter")
|
| 126 |
return OpenAI(
|
|
|
|
| 139 |
if model_id.startswith("api:"):
|
| 140 |
return completion_openrouter(prompt, model_id.removeprefix("api:"))
|
| 141 |
else:
|
| 142 |
+
resp = completion(prompt, model_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
return resp
|
| 144 |
|
| 145 |
|