|
|
""" |
|
|
FastAPI backend for AnyCoder - provides REST API endpoints |
|
|
""" |
|
|
from fastapi import FastAPI, HTTPException, Header, WebSocket, WebSocketDisconnect, Request, Response |
|
|
from fastapi.middleware.cors import CORSMiddleware |
|
|
from fastapi.responses import StreamingResponse, RedirectResponse, JSONResponse |
|
|
from pydantic import BaseModel |
|
|
from typing import Optional, List, Dict, AsyncGenerator |
|
|
import json |
|
|
import asyncio |
|
|
from datetime import datetime |
|
|
import secrets |
|
|
import base64 |
|
|
import urllib.parse |
|
|
|
|
|
|
|
|
import sys |
|
|
import os |
|
|
from huggingface_hub import InferenceClient |
|
|
import httpx |
|
|
|
|
|
|
|
|
from backend_models import ( |
|
|
get_inference_client, |
|
|
get_real_model_id, |
|
|
create_gemini3_messages, |
|
|
is_native_sdk_model, |
|
|
is_mistral_model |
|
|
) |
|
|
|
|
|
|
|
|
from project_importer import ProjectImporter |
|
|
|
|
|
|
|
|
|
|
|
print("[Startup] Loading system prompts from backend_prompts...") |
|
|
|
|
|
try: |
|
|
from backend_prompts import ( |
|
|
HTML_SYSTEM_PROMPT, |
|
|
TRANSFORMERS_JS_SYSTEM_PROMPT, |
|
|
STREAMLIT_SYSTEM_PROMPT, |
|
|
REACT_SYSTEM_PROMPT, |
|
|
GRADIO_SYSTEM_PROMPT, |
|
|
JSON_SYSTEM_PROMPT, |
|
|
GENERIC_SYSTEM_PROMPT |
|
|
) |
|
|
print("[Startup] ✅ All system prompts loaded successfully from backend_prompts.py") |
|
|
except Exception as e: |
|
|
import traceback |
|
|
print(f"[Startup] ❌ ERROR: Could not import from backend_prompts: {e}") |
|
|
print(f"[Startup] Traceback: {traceback.format_exc()}") |
|
|
print("[Startup] Using minimal fallback prompts") |
|
|
|
|
|
|
|
|
HTML_SYSTEM_PROMPT = "You are an expert web developer. Create complete HTML applications with CSS and JavaScript." |
|
|
TRANSFORMERS_JS_SYSTEM_PROMPT = "You are an expert at creating transformers.js applications. Generate complete working code." |
|
|
STREAMLIT_SYSTEM_PROMPT = "You are an expert Streamlit developer. Create complete Streamlit applications." |
|
|
REACT_SYSTEM_PROMPT = "You are an expert React developer. Create complete React applications with Next.js." |
|
|
GRADIO_SYSTEM_PROMPT = "You are an expert Gradio developer. Create complete, working Gradio applications." |
|
|
JSON_SYSTEM_PROMPT = "You are an expert at generating JSON configurations. Create valid, well-structured JSON." |
|
|
GENERIC_SYSTEM_PROMPT = "You are an expert {language} developer. Create complete, working {language} applications." |
|
|
|
|
|
print("[Startup] System prompts initialization complete") |
|
|
|
|
|
|
|
|
SYSTEM_PROMPT_CACHE = { |
|
|
"html": HTML_SYSTEM_PROMPT, |
|
|
"gradio": GRADIO_SYSTEM_PROMPT, |
|
|
"streamlit": STREAMLIT_SYSTEM_PROMPT, |
|
|
"transformers.js": TRANSFORMERS_JS_SYSTEM_PROMPT, |
|
|
"react": REACT_SYSTEM_PROMPT, |
|
|
"comfyui": JSON_SYSTEM_PROMPT, |
|
|
} |
|
|
|
|
|
|
|
|
import threading |
|
|
_client_pool = {} |
|
|
_client_pool_lock = threading.Lock() |
|
|
|
|
|
def get_cached_client(model_id: str, provider: str = "auto"): |
|
|
"""Get or create a cached API client for reuse""" |
|
|
cache_key = f"{model_id}:{provider}" |
|
|
|
|
|
with _client_pool_lock: |
|
|
if cache_key not in _client_pool: |
|
|
_client_pool[cache_key] = get_inference_client(model_id, provider) |
|
|
return _client_pool[cache_key] |
|
|
|
|
|
|
|
|
AVAILABLE_MODELS = [ |
|
|
{"name": "Gemini 3.0 Pro", "id": "gemini-3.0-pro", "description": "Google Gemini 3.0 Pro via Poe with advanced reasoning"}, |
|
|
{"name": "Grok 4.1 Fast", "id": "x-ai/grok-4.1-fast", "description": "Grok 4.1 Fast model via OpenRouter (20 req/min on free tier)"}, |
|
|
{"name": "MiniMax M2", "id": "MiniMaxAI/MiniMax-M2", "description": "MiniMax M2 model via HuggingFace InferenceClient with Novita provider"}, |
|
|
{"name": "DeepSeek V3.2-Exp", "id": "deepseek-ai/DeepSeek-V3.2-Exp", "description": "DeepSeek V3.2 Experimental via HuggingFace"}, |
|
|
{"name": "DeepSeek R1", "id": "deepseek-ai/DeepSeek-R1-0528", "description": "DeepSeek R1 model for code generation"}, |
|
|
{"name": "GPT-5", "id": "gpt-5", "description": "OpenAI GPT-5 via OpenRouter"}, |
|
|
{"name": "Gemini Flash Latest", "id": "gemini-flash-latest", "description": "Google Gemini Flash via OpenRouter"}, |
|
|
{"name": "Qwen3 Max Preview", "id": "qwen3-max-preview", "description": "Qwen3 Max Preview via DashScope API"}, |
|
|
] |
|
|
|
|
|
|
|
|
MODEL_CACHE = {model["id"]: model for model in AVAILABLE_MODELS} |
|
|
print(f"[Startup] ✅ Performance optimizations loaded: {len(SYSTEM_PROMPT_CACHE)} cached prompts, {len(MODEL_CACHE)} cached models, client pooling enabled") |
|
|
|
|
|
LANGUAGE_CHOICES = ["html", "gradio", "transformers.js", "streamlit", "comfyui", "react"] |
|
|
|
|
|
app = FastAPI(title="AnyCoder API", version="1.0.0") |
|
|
|
|
|
|
|
|
OAUTH_CLIENT_ID = os.getenv("OAUTH_CLIENT_ID", "") |
|
|
OAUTH_CLIENT_SECRET = os.getenv("OAUTH_CLIENT_SECRET", "") |
|
|
OAUTH_SCOPES = os.getenv("OAUTH_SCOPES", "openid profile manage-repos") |
|
|
OPENID_PROVIDER_URL = os.getenv("OPENID_PROVIDER_URL", "https://huggingface.co") |
|
|
SPACE_HOST = os.getenv("SPACE_HOST", "localhost:7860") |
|
|
|
|
|
|
|
|
|
|
|
ALLOWED_ORIGINS = os.getenv("ALLOWED_ORIGINS", "*").split(",") if os.getenv("ALLOWED_ORIGINS") else [ |
|
|
"http://localhost:3000", |
|
|
"http://localhost:3001", |
|
|
"http://localhost:7860", |
|
|
f"https://{SPACE_HOST}" if SPACE_HOST and not SPACE_HOST.startswith("localhost") else "http://localhost:7860" |
|
|
] |
|
|
|
|
|
app.add_middleware( |
|
|
CORSMiddleware, |
|
|
allow_origins=ALLOWED_ORIGINS if ALLOWED_ORIGINS != ["*"] else ["*"], |
|
|
allow_credentials=True, |
|
|
allow_methods=["*"], |
|
|
allow_headers=["*"], |
|
|
allow_origin_regex=r"https://.*\.hf\.space" if SPACE_HOST and not SPACE_HOST.startswith("localhost") else None, |
|
|
) |
|
|
|
|
|
|
|
|
oauth_states = {} |
|
|
|
|
|
|
|
|
user_sessions = {} |
|
|
|
|
|
|
|
|
|
|
|
class CodeGenerationRequest(BaseModel): |
|
|
query: str |
|
|
language: str = "html" |
|
|
model_id: str = "MiniMaxAI/MiniMax-M2" |
|
|
provider: str = "auto" |
|
|
history: List[List[str]] = [] |
|
|
agent_mode: bool = False |
|
|
|
|
|
|
|
|
class DeploymentRequest(BaseModel): |
|
|
code: str |
|
|
space_name: Optional[str] = None |
|
|
language: str |
|
|
requirements: Optional[str] = None |
|
|
existing_repo_id: Optional[str] = None |
|
|
commit_message: Optional[str] = None |
|
|
|
|
|
|
|
|
class AuthStatus(BaseModel): |
|
|
authenticated: bool |
|
|
username: Optional[str] = None |
|
|
message: str |
|
|
|
|
|
|
|
|
class ModelInfo(BaseModel): |
|
|
name: str |
|
|
id: str |
|
|
description: str |
|
|
|
|
|
|
|
|
class CodeGenerationResponse(BaseModel): |
|
|
code: str |
|
|
history: List[List[str]] |
|
|
status: str |
|
|
|
|
|
|
|
|
class ImportRequest(BaseModel): |
|
|
url: str |
|
|
prefer_local: bool = False |
|
|
|
|
|
|
|
|
class ImportResponse(BaseModel): |
|
|
status: str |
|
|
message: str |
|
|
code: str |
|
|
language: str |
|
|
url: str |
|
|
metadata: Dict |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class MockAuth: |
|
|
def __init__(self, token: Optional[str] = None, username: Optional[str] = None): |
|
|
self.token = token |
|
|
self.username = username |
|
|
|
|
|
def is_authenticated(self): |
|
|
return bool(self.token) |
|
|
|
|
|
|
|
|
def get_auth_from_header(authorization: Optional[str] = None): |
|
|
"""Extract authentication from header or session token""" |
|
|
if not authorization: |
|
|
return MockAuth(None, None) |
|
|
|
|
|
|
|
|
if authorization.startswith("Bearer "): |
|
|
token = authorization.replace("Bearer ", "") |
|
|
else: |
|
|
token = authorization |
|
|
|
|
|
|
|
|
if token and "-" in token and len(token) > 20: |
|
|
|
|
|
if token in user_sessions: |
|
|
session = user_sessions[token] |
|
|
return MockAuth(session["access_token"], session["username"]) |
|
|
|
|
|
|
|
|
if token and token.startswith("dev_token_"): |
|
|
parts = token.split("_") |
|
|
username = parts[2] if len(parts) > 2 else "user" |
|
|
return MockAuth(token, username) |
|
|
|
|
|
|
|
|
return MockAuth(token, None) |
|
|
|
|
|
|
|
|
@app.get("/") |
|
|
async def root(): |
|
|
"""Health check endpoint""" |
|
|
return {"status": "ok", "message": "AnyCoder API is running"} |
|
|
|
|
|
|
|
|
@app.get("/api/models", response_model=List[ModelInfo]) |
|
|
async def get_models(): |
|
|
"""Get available AI models""" |
|
|
return [ |
|
|
ModelInfo( |
|
|
name=model["name"], |
|
|
id=model["id"], |
|
|
description=model["description"] |
|
|
) |
|
|
for model in AVAILABLE_MODELS |
|
|
] |
|
|
|
|
|
|
|
|
@app.get("/api/languages") |
|
|
async def get_languages(): |
|
|
"""Get available programming languages/frameworks""" |
|
|
return {"languages": LANGUAGE_CHOICES} |
|
|
|
|
|
|
|
|
@app.get("/api/auth/login") |
|
|
async def oauth_login(request: Request): |
|
|
"""Initiate OAuth login flow""" |
|
|
|
|
|
state = secrets.token_urlsafe(32) |
|
|
oauth_states[state] = {"timestamp": datetime.now()} |
|
|
|
|
|
|
|
|
protocol = "https" if SPACE_HOST and not SPACE_HOST.startswith("localhost") else "http" |
|
|
redirect_uri = f"{protocol}://{SPACE_HOST}/api/auth/callback" |
|
|
|
|
|
|
|
|
auth_url = ( |
|
|
f"{OPENID_PROVIDER_URL}/oauth/authorize" |
|
|
f"?client_id={OAUTH_CLIENT_ID}" |
|
|
f"&redirect_uri={urllib.parse.quote(redirect_uri)}" |
|
|
f"&scope={urllib.parse.quote(OAUTH_SCOPES)}" |
|
|
f"&state={state}" |
|
|
f"&response_type=code" |
|
|
) |
|
|
|
|
|
return JSONResponse({"login_url": auth_url, "state": state}) |
|
|
|
|
|
|
|
|
@app.get("/api/auth/callback") |
|
|
async def oauth_callback(code: str, state: str, request: Request): |
|
|
"""Handle OAuth callback""" |
|
|
|
|
|
if state not in oauth_states: |
|
|
raise HTTPException(status_code=400, detail="Invalid state parameter") |
|
|
|
|
|
|
|
|
oauth_states.pop(state, None) |
|
|
|
|
|
|
|
|
protocol = "https" if SPACE_HOST and not SPACE_HOST.startswith("localhost") else "http" |
|
|
redirect_uri = f"{protocol}://{SPACE_HOST}/api/auth/callback" |
|
|
|
|
|
|
|
|
auth_string = f"{OAUTH_CLIENT_ID}:{OAUTH_CLIENT_SECRET}" |
|
|
auth_bytes = auth_string.encode('utf-8') |
|
|
auth_b64 = base64.b64encode(auth_bytes).decode('utf-8') |
|
|
|
|
|
async with httpx.AsyncClient() as client: |
|
|
try: |
|
|
token_response = await client.post( |
|
|
f"{OPENID_PROVIDER_URL}/oauth/token", |
|
|
data={ |
|
|
"client_id": OAUTH_CLIENT_ID, |
|
|
"code": code, |
|
|
"grant_type": "authorization_code", |
|
|
"redirect_uri": redirect_uri, |
|
|
}, |
|
|
headers={ |
|
|
"Authorization": f"Basic {auth_b64}", |
|
|
"Content-Type": "application/x-www-form-urlencoded", |
|
|
}, |
|
|
) |
|
|
token_response.raise_for_status() |
|
|
token_data = token_response.json() |
|
|
|
|
|
|
|
|
access_token = token_data.get("access_token") |
|
|
userinfo_response = await client.get( |
|
|
f"{OPENID_PROVIDER_URL}/oauth/userinfo", |
|
|
headers={"Authorization": f"Bearer {access_token}"}, |
|
|
) |
|
|
userinfo_response.raise_for_status() |
|
|
user_info = userinfo_response.json() |
|
|
|
|
|
|
|
|
session_token = secrets.token_urlsafe(32) |
|
|
user_sessions[session_token] = { |
|
|
"access_token": access_token, |
|
|
"user_info": user_info, |
|
|
"timestamp": datetime.now(), |
|
|
"username": user_info.get("name") or user_info.get("preferred_username") or "user", |
|
|
"deployed_spaces": [] |
|
|
} |
|
|
|
|
|
|
|
|
frontend_url = f"{protocol}://{SPACE_HOST}/?session={session_token}" |
|
|
return RedirectResponse(url=frontend_url) |
|
|
|
|
|
except httpx.HTTPError as e: |
|
|
print(f"OAuth error: {e}") |
|
|
raise HTTPException(status_code=500, detail=f"OAuth failed: {str(e)}") |
|
|
|
|
|
|
|
|
@app.get("/api/auth/session") |
|
|
async def get_session(session: str): |
|
|
"""Get user info from session token""" |
|
|
if session not in user_sessions: |
|
|
raise HTTPException(status_code=401, detail="Invalid session") |
|
|
|
|
|
session_data = user_sessions[session] |
|
|
return { |
|
|
"access_token": session_data["access_token"], |
|
|
"user_info": session_data["user_info"], |
|
|
} |
|
|
|
|
|
|
|
|
@app.get("/api/auth/status") |
|
|
async def auth_status(authorization: Optional[str] = Header(None)): |
|
|
"""Check authentication status""" |
|
|
auth = get_auth_from_header(authorization) |
|
|
if auth.is_authenticated(): |
|
|
return AuthStatus( |
|
|
authenticated=True, |
|
|
username=auth.username, |
|
|
message=f"Authenticated as {auth.username}" |
|
|
) |
|
|
return AuthStatus( |
|
|
authenticated=False, |
|
|
username=None, |
|
|
message="Not authenticated" |
|
|
) |
|
|
|
|
|
|
|
|
@app.post("/api/generate") |
|
|
async def generate_code( |
|
|
request: CodeGenerationRequest, |
|
|
authorization: Optional[str] = Header(None) |
|
|
): |
|
|
"""Generate code based on user query - returns streaming response""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
query = request.query |
|
|
language = request.language |
|
|
model_id = request.model_id |
|
|
provider = request.provider |
|
|
|
|
|
async def event_stream() -> AsyncGenerator[str, None]: |
|
|
"""Stream generated code chunks""" |
|
|
|
|
|
selected_model_id = model_id |
|
|
|
|
|
try: |
|
|
|
|
|
selected_model = MODEL_CACHE.get(selected_model_id) |
|
|
if not selected_model: |
|
|
|
|
|
selected_model = AVAILABLE_MODELS[0] |
|
|
selected_model_id = selected_model["id"] |
|
|
|
|
|
|
|
|
generated_code = "" |
|
|
|
|
|
|
|
|
system_prompt = SYSTEM_PROMPT_CACHE.get(language) |
|
|
if not system_prompt: |
|
|
|
|
|
system_prompt = GENERIC_SYSTEM_PROMPT.format(language=language) |
|
|
|
|
|
|
|
|
client = get_cached_client(selected_model_id, provider) |
|
|
|
|
|
|
|
|
actual_model_id = get_real_model_id(selected_model_id) |
|
|
|
|
|
|
|
|
user_content = f"Generate a {language} application: {query}" |
|
|
messages = [ |
|
|
{"role": "system", "content": system_prompt}, |
|
|
{"role": "user", "content": user_content} |
|
|
] |
|
|
|
|
|
|
|
|
try: |
|
|
|
|
|
if is_mistral_model(selected_model_id): |
|
|
print("[Generate] Using Mistral SDK") |
|
|
stream = client.chat.stream( |
|
|
model=actual_model_id, |
|
|
messages=messages, |
|
|
max_tokens=10000 |
|
|
) |
|
|
|
|
|
|
|
|
else: |
|
|
stream = client.chat.completions.create( |
|
|
model=actual_model_id, |
|
|
messages=messages, |
|
|
temperature=0.7, |
|
|
max_tokens=10000, |
|
|
stream=True |
|
|
) |
|
|
|
|
|
chunk_count = 0 |
|
|
is_mistral = is_mistral_model(selected_model_id) |
|
|
|
|
|
|
|
|
for chunk in stream: |
|
|
chunk_content = None |
|
|
|
|
|
if is_mistral: |
|
|
|
|
|
try: |
|
|
if chunk.data and chunk.data.choices and chunk.data.choices[0].delta.content: |
|
|
chunk_content = chunk.data.choices[0].delta.content |
|
|
except (AttributeError, IndexError): |
|
|
continue |
|
|
else: |
|
|
|
|
|
try: |
|
|
if chunk.choices and chunk.choices[0].delta.content: |
|
|
chunk_content = chunk.choices[0].delta.content |
|
|
except (AttributeError, IndexError): |
|
|
continue |
|
|
|
|
|
if chunk_content: |
|
|
generated_code += chunk_content |
|
|
chunk_count += 1 |
|
|
|
|
|
|
|
|
|
|
|
if chunk_count % 5 == 0: |
|
|
await asyncio.sleep(0) |
|
|
|
|
|
|
|
|
event_data = json.dumps({ |
|
|
"type": "chunk", |
|
|
"content": chunk_content |
|
|
}) |
|
|
yield f"data: {event_data}\n\n" |
|
|
|
|
|
|
|
|
completion_data = json.dumps({ |
|
|
"type": "complete", |
|
|
"code": generated_code |
|
|
}) |
|
|
yield f"data: {completion_data}\n\n" |
|
|
|
|
|
except Exception as e: |
|
|
|
|
|
error_message = str(e) |
|
|
is_rate_limit = False |
|
|
error_type = type(e).__name__ |
|
|
|
|
|
|
|
|
if error_type == "RateLimitError" or "rate_limit" in error_type.lower(): |
|
|
is_rate_limit = True |
|
|
|
|
|
elif hasattr(e, 'status_code') and e.status_code == 429: |
|
|
is_rate_limit = True |
|
|
|
|
|
elif "429" in error_message or "rate limit" in error_message.lower() or "too many requests" in error_message.lower(): |
|
|
is_rate_limit = True |
|
|
|
|
|
if is_rate_limit: |
|
|
|
|
|
retry_after = None |
|
|
if hasattr(e, 'response') and e.response: |
|
|
retry_after = e.response.headers.get('Retry-After') or e.response.headers.get('retry-after') |
|
|
|
|
|
elif hasattr(e, 'retry_after'): |
|
|
retry_after = str(e.retry_after) |
|
|
|
|
|
if selected_model_id == "x-ai/grok-4.1-fast" or selected_model_id.startswith("openrouter/"): |
|
|
error_message = "⏱️ Rate limit exceeded for OpenRouter model" |
|
|
if retry_after: |
|
|
error_message += f". Please wait {retry_after} seconds before trying again." |
|
|
else: |
|
|
error_message += ". Free tier allows up to 20 requests per minute. Please wait a moment and try again." |
|
|
else: |
|
|
error_message = f"⏱️ Rate limit exceeded. Please wait before trying again." |
|
|
if retry_after: |
|
|
error_message += f" Retry after {retry_after} seconds." |
|
|
|
|
|
|
|
|
elif hasattr(e, 'status_code'): |
|
|
if e.status_code == 401: |
|
|
error_message = "❌ Authentication failed. Please check your API key." |
|
|
elif e.status_code == 403: |
|
|
error_message = "❌ Access forbidden. Please check your API key permissions." |
|
|
elif e.status_code == 500 or e.status_code == 502 or e.status_code == 503: |
|
|
error_message = "❌ Service temporarily unavailable. Please try again later." |
|
|
|
|
|
error_data = json.dumps({ |
|
|
"type": "error", |
|
|
"message": error_message |
|
|
}) |
|
|
yield f"data: {error_data}\n\n" |
|
|
|
|
|
except Exception as e: |
|
|
|
|
|
error_message = str(e) |
|
|
|
|
|
if "429" in error_message or "rate limit" in error_message.lower() or "too many requests" in error_message.lower(): |
|
|
if selected_model_id == "x-ai/grok-4.1-fast" or selected_model_id.startswith("openrouter/"): |
|
|
error_message = "⏱️ Rate limit exceeded for OpenRouter model. Free tier allows up to 20 requests per minute. Please wait a moment and try again." |
|
|
else: |
|
|
error_message = "⏱️ Rate limit exceeded. Please wait before trying again." |
|
|
|
|
|
error_data = json.dumps({ |
|
|
"type": "error", |
|
|
"message": f"Generation error: {error_message}" |
|
|
}) |
|
|
yield f"data: {error_data}\n\n" |
|
|
|
|
|
return StreamingResponse( |
|
|
event_stream(), |
|
|
media_type="text/event-stream", |
|
|
headers={ |
|
|
"Cache-Control": "no-cache, no-transform", |
|
|
"Connection": "keep-alive", |
|
|
"X-Accel-Buffering": "no", |
|
|
"Content-Encoding": "none", |
|
|
"Transfer-Encoding": "chunked" |
|
|
} |
|
|
) |
|
|
|
|
|
|
|
|
@app.post("/api/deploy") |
|
|
async def deploy( |
|
|
request: DeploymentRequest, |
|
|
authorization: Optional[str] = Header(None) |
|
|
): |
|
|
"""Deploy generated code to HuggingFace Spaces""" |
|
|
auth = get_auth_from_header(authorization) |
|
|
|
|
|
if not auth.is_authenticated(): |
|
|
raise HTTPException(status_code=401, detail="Authentication required") |
|
|
|
|
|
|
|
|
if auth.token and auth.token.startswith("dev_token_"): |
|
|
|
|
|
from backend_deploy import detect_sdk_from_code |
|
|
base_url = "https://huggingface.co/new-space" |
|
|
|
|
|
sdk = detect_sdk_from_code(request.code, request.language) |
|
|
|
|
|
params = urllib.parse.urlencode({ |
|
|
"name": request.space_name or "my-anycoder-app", |
|
|
"sdk": sdk |
|
|
}) |
|
|
|
|
|
|
|
|
if request.language in ["html", "transformers.js", "comfyui"]: |
|
|
file_path = "index.html" |
|
|
else: |
|
|
file_path = "app.py" |
|
|
|
|
|
files_params = urllib.parse.urlencode({ |
|
|
"files[0][path]": file_path, |
|
|
"files[0][content]": request.code |
|
|
}) |
|
|
|
|
|
space_url = f"{base_url}?{params}&{files_params}" |
|
|
|
|
|
return { |
|
|
"success": True, |
|
|
"space_url": space_url, |
|
|
"message": "Dev mode: Please create the space manually", |
|
|
"dev_mode": True |
|
|
} |
|
|
|
|
|
|
|
|
try: |
|
|
from backend_deploy import deploy_to_huggingface_space |
|
|
|
|
|
|
|
|
user_token = auth.token if auth.token else os.getenv("HF_TOKEN") |
|
|
|
|
|
if not user_token: |
|
|
raise HTTPException(status_code=401, detail="No HuggingFace token available. Please sign in first.") |
|
|
|
|
|
print(f"[Deploy] Attempting deployment with token (first 10 chars): {user_token[:10]}...") |
|
|
print(f"[Deploy] Request parameters - language: {request.language}, space_name: {request.space_name}, existing_repo_id: {request.existing_repo_id}") |
|
|
|
|
|
|
|
|
existing_repo_id = request.existing_repo_id |
|
|
session_token = authorization.replace("Bearer ", "") if authorization else None |
|
|
|
|
|
|
|
|
if not existing_repo_id and session_token and session_token in user_sessions: |
|
|
session = user_sessions[session_token] |
|
|
deployed_spaces = session.get("deployed_spaces", []) |
|
|
|
|
|
|
|
|
for space in reversed(deployed_spaces): |
|
|
if space.get("language") == request.language: |
|
|
existing_repo_id = space.get("repo_id") |
|
|
print(f"[Deploy] Found existing space for {request.language}: {existing_repo_id}") |
|
|
break |
|
|
|
|
|
|
|
|
print(f"[Deploy] Calling deploy_to_huggingface_space with existing_repo_id: {existing_repo_id}") |
|
|
success, message, space_url = deploy_to_huggingface_space( |
|
|
code=request.code, |
|
|
language=request.language, |
|
|
space_name=request.space_name, |
|
|
token=user_token, |
|
|
username=auth.username, |
|
|
description=request.description if hasattr(request, 'description') else None, |
|
|
private=False, |
|
|
existing_repo_id=existing_repo_id, |
|
|
commit_message=request.commit_message |
|
|
) |
|
|
|
|
|
if success: |
|
|
|
|
|
repo_id = space_url.split("/spaces/")[-1] if space_url else None |
|
|
print(f"[Deploy] Success! Repo ID: {repo_id}") |
|
|
|
|
|
|
|
|
if session_token and session_token in user_sessions: |
|
|
if repo_id: |
|
|
session = user_sessions[session_token] |
|
|
deployed_spaces = session.get("deployed_spaces", []) |
|
|
|
|
|
|
|
|
space_entry = { |
|
|
"repo_id": repo_id, |
|
|
"language": request.language, |
|
|
"timestamp": datetime.now() |
|
|
} |
|
|
|
|
|
|
|
|
deployed_spaces = [s for s in deployed_spaces if s.get("repo_id") != repo_id] |
|
|
deployed_spaces.append(space_entry) |
|
|
|
|
|
session["deployed_spaces"] = deployed_spaces |
|
|
print(f"[Deploy] Tracked space in session: {repo_id}") |
|
|
|
|
|
return { |
|
|
"success": True, |
|
|
"space_url": space_url, |
|
|
"message": message, |
|
|
"repo_id": repo_id |
|
|
} |
|
|
else: |
|
|
|
|
|
if "401" in message or "Unauthorized" in message: |
|
|
raise HTTPException( |
|
|
status_code=401, |
|
|
detail="Authentication failed. Please sign in again with HuggingFace." |
|
|
) |
|
|
elif "403" in message or "Forbidden" in message or "Permission" in message: |
|
|
raise HTTPException( |
|
|
status_code=403, |
|
|
detail="Permission denied. Your HuggingFace token may not have the required permissions (manage-repos scope)." |
|
|
) |
|
|
else: |
|
|
raise HTTPException( |
|
|
status_code=500, |
|
|
detail=message |
|
|
) |
|
|
|
|
|
except HTTPException: |
|
|
|
|
|
raise |
|
|
except Exception as e: |
|
|
|
|
|
import traceback |
|
|
error_details = traceback.format_exc() |
|
|
print(f"[Deploy] Deployment error: {error_details}") |
|
|
|
|
|
raise HTTPException( |
|
|
status_code=500, |
|
|
detail=f"Deployment failed: {str(e)}" |
|
|
) |
|
|
|
|
|
|
|
|
@app.post("/api/import", response_model=ImportResponse) |
|
|
async def import_project(request: ImportRequest): |
|
|
""" |
|
|
Import a project from HuggingFace Space, HuggingFace Model, or GitHub repo |
|
|
|
|
|
Supports URLs like: |
|
|
- https://huggingface.co/spaces/username/space-name |
|
|
- https://huggingface.co/username/model-name |
|
|
- https://github.com/username/repo-name |
|
|
""" |
|
|
try: |
|
|
importer = ProjectImporter() |
|
|
result = importer.import_from_url(request.url) |
|
|
|
|
|
|
|
|
if request.prefer_local and result.get('metadata', {}).get('has_alternatives'): |
|
|
|
|
|
local_code = result['metadata'].get('local_code') |
|
|
if local_code: |
|
|
result['code'] = local_code |
|
|
result['metadata']['code_type'] = 'local' |
|
|
result['message'] = result['message'].replace('inference', 'local') |
|
|
|
|
|
return ImportResponse(**result) |
|
|
|
|
|
except Exception as e: |
|
|
return ImportResponse( |
|
|
status="error", |
|
|
message=f"Import failed: {str(e)}", |
|
|
code="", |
|
|
language="unknown", |
|
|
url=request.url, |
|
|
metadata={} |
|
|
) |
|
|
|
|
|
|
|
|
@app.get("/api/import/space/{username}/{space_name}") |
|
|
async def import_space(username: str, space_name: str): |
|
|
"""Import a specific HuggingFace Space by username and space name""" |
|
|
try: |
|
|
importer = ProjectImporter() |
|
|
result = importer.import_space(username, space_name) |
|
|
return result |
|
|
except Exception as e: |
|
|
return { |
|
|
"status": "error", |
|
|
"message": f"Failed to import space: {str(e)}", |
|
|
"code": "", |
|
|
"language": "unknown", |
|
|
"url": f"https://huggingface.co/spaces/{username}/{space_name}", |
|
|
"metadata": {} |
|
|
} |
|
|
|
|
|
|
|
|
@app.get("/api/import/model/{path:path}") |
|
|
async def import_model(path: str, prefer_local: bool = False): |
|
|
""" |
|
|
Import a specific HuggingFace Model by model ID |
|
|
|
|
|
Example: /api/import/model/meta-llama/Llama-3.2-1B-Instruct |
|
|
""" |
|
|
try: |
|
|
importer = ProjectImporter() |
|
|
result = importer.import_model(path, prefer_local=prefer_local) |
|
|
return result |
|
|
except Exception as e: |
|
|
return { |
|
|
"status": "error", |
|
|
"message": f"Failed to import model: {str(e)}", |
|
|
"code": "", |
|
|
"language": "python", |
|
|
"url": f"https://huggingface.co/{path}", |
|
|
"metadata": {} |
|
|
} |
|
|
|
|
|
|
|
|
@app.get("/api/import/github/{owner}/{repo}") |
|
|
async def import_github(owner: str, repo: str): |
|
|
"""Import a GitHub repository by owner and repo name""" |
|
|
try: |
|
|
importer = ProjectImporter() |
|
|
result = importer.import_github_repo(owner, repo) |
|
|
return result |
|
|
except Exception as e: |
|
|
return { |
|
|
"status": "error", |
|
|
"message": f"Failed to import repository: {str(e)}", |
|
|
"code": "", |
|
|
"language": "python", |
|
|
"url": f"https://github.com/{owner}/{repo}", |
|
|
"metadata": {} |
|
|
} |
|
|
|
|
|
|
|
|
@app.websocket("/ws/generate") |
|
|
async def websocket_generate(websocket: WebSocket): |
|
|
"""WebSocket endpoint for real-time code generation""" |
|
|
await websocket.accept() |
|
|
|
|
|
try: |
|
|
while True: |
|
|
|
|
|
data = await websocket.receive_json() |
|
|
|
|
|
query = data.get("query") |
|
|
language = data.get("language", "html") |
|
|
model_id = data.get("model_id", "MiniMaxAI/MiniMax-M2") |
|
|
|
|
|
|
|
|
await websocket.send_json({ |
|
|
"type": "status", |
|
|
"message": "Generating code..." |
|
|
}) |
|
|
|
|
|
|
|
|
await asyncio.sleep(0.5) |
|
|
|
|
|
|
|
|
sample_code = f"<!-- Generated {language} code -->\n<h1>Hello from AnyCoder!</h1>" |
|
|
|
|
|
for i, char in enumerate(sample_code): |
|
|
await websocket.send_json({ |
|
|
"type": "chunk", |
|
|
"content": char, |
|
|
"progress": (i + 1) / len(sample_code) * 100 |
|
|
}) |
|
|
await asyncio.sleep(0.01) |
|
|
|
|
|
|
|
|
await websocket.send_json({ |
|
|
"type": "complete", |
|
|
"code": sample_code |
|
|
}) |
|
|
|
|
|
except WebSocketDisconnect: |
|
|
print("Client disconnected") |
|
|
except Exception as e: |
|
|
await websocket.send_json({ |
|
|
"type": "error", |
|
|
"message": str(e) |
|
|
}) |
|
|
await websocket.close() |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
import uvicorn |
|
|
uvicorn.run("backend_api:app", host="0.0.0.0", port=8000, reload=True) |
|
|
|
|
|
|