""" FastAPI backend for AnyCoder - provides REST API endpoints """ from fastapi import FastAPI, HTTPException, Header, WebSocket, WebSocketDisconnect, Request, Response from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import StreamingResponse, RedirectResponse, JSONResponse from pydantic import BaseModel from typing import Optional, List, Dict, AsyncGenerator import json import asyncio from datetime import datetime import secrets import base64 import urllib.parse # Import only what we need, avoiding Gradio UI imports import sys import os from huggingface_hub import InferenceClient import httpx # Import model handling from backend_models from backend_models import ( get_inference_client, get_real_model_id, create_gemini3_messages, is_native_sdk_model, is_mistral_model ) # Import project importer for importing from HF/GitHub from project_importer import ProjectImporter # Import system prompts from standalone backend_prompts.py # No dependencies on Gradio or heavy libraries print("[Startup] Loading system prompts from backend_prompts...") try: from backend_prompts import ( HTML_SYSTEM_PROMPT, TRANSFORMERS_JS_SYSTEM_PROMPT, STREAMLIT_SYSTEM_PROMPT, REACT_SYSTEM_PROMPT, GRADIO_SYSTEM_PROMPT, JSON_SYSTEM_PROMPT, GENERIC_SYSTEM_PROMPT ) print("[Startup] ✅ All system prompts loaded successfully from backend_prompts.py") except Exception as e: import traceback print(f"[Startup] ❌ ERROR: Could not import from backend_prompts: {e}") print(f"[Startup] Traceback: {traceback.format_exc()}") print("[Startup] Using minimal fallback prompts") # Define minimal fallback prompts HTML_SYSTEM_PROMPT = "You are an expert web developer. Create complete HTML applications with CSS and JavaScript." TRANSFORMERS_JS_SYSTEM_PROMPT = "You are an expert at creating transformers.js applications. Generate complete working code." STREAMLIT_SYSTEM_PROMPT = "You are an expert Streamlit developer. Create complete Streamlit applications." REACT_SYSTEM_PROMPT = "You are an expert React developer. Create complete React applications with Next.js." GRADIO_SYSTEM_PROMPT = "You are an expert Gradio developer. Create complete, working Gradio applications." JSON_SYSTEM_PROMPT = "You are an expert at generating JSON configurations. Create valid, well-structured JSON." GENERIC_SYSTEM_PROMPT = "You are an expert {language} developer. Create complete, working {language} applications." print("[Startup] System prompts initialization complete") # Cache system prompts map for fast lookup (created once at startup) SYSTEM_PROMPT_CACHE = { "html": HTML_SYSTEM_PROMPT, "gradio": GRADIO_SYSTEM_PROMPT, "streamlit": STREAMLIT_SYSTEM_PROMPT, "transformers.js": TRANSFORMERS_JS_SYSTEM_PROMPT, "react": REACT_SYSTEM_PROMPT, "comfyui": JSON_SYSTEM_PROMPT, } # Client connection pool for reuse (thread-safe) import threading _client_pool = {} _client_pool_lock = threading.Lock() def get_cached_client(model_id: str, provider: str = "auto"): """Get or create a cached API client for reuse""" cache_key = f"{model_id}:{provider}" with _client_pool_lock: if cache_key not in _client_pool: _client_pool[cache_key] = get_inference_client(model_id, provider) return _client_pool[cache_key] # Define models and languages here to avoid importing Gradio UI AVAILABLE_MODELS = [ {"name": "Gemini 3.0 Pro", "id": "gemini-3.0-pro", "description": "Google Gemini 3.0 Pro via Poe with advanced reasoning"}, {"name": "Grok 4.1 Fast", "id": "x-ai/grok-4.1-fast", "description": "Grok 4.1 Fast model via OpenRouter (20 req/min on free tier)"}, {"name": "MiniMax M2", "id": "MiniMaxAI/MiniMax-M2", "description": "MiniMax M2 model via HuggingFace InferenceClient with Novita provider"}, {"name": "DeepSeek V3.2-Exp", "id": "deepseek-ai/DeepSeek-V3.2-Exp", "description": "DeepSeek V3.2 Experimental via HuggingFace"}, {"name": "DeepSeek R1", "id": "deepseek-ai/DeepSeek-R1-0528", "description": "DeepSeek R1 model for code generation"}, {"name": "GPT-5", "id": "gpt-5", "description": "OpenAI GPT-5 via OpenRouter"}, {"name": "Gemini Flash Latest", "id": "gemini-flash-latest", "description": "Google Gemini Flash via OpenRouter"}, {"name": "Qwen3 Max Preview", "id": "qwen3-max-preview", "description": "Qwen3 Max Preview via DashScope API"}, ] # Cache model lookup for faster access (built after AVAILABLE_MODELS is defined) MODEL_CACHE = {model["id"]: model for model in AVAILABLE_MODELS} print(f"[Startup] ✅ Performance optimizations loaded: {len(SYSTEM_PROMPT_CACHE)} cached prompts, {len(MODEL_CACHE)} cached models, client pooling enabled") LANGUAGE_CHOICES = ["html", "gradio", "transformers.js", "streamlit", "comfyui", "react"] app = FastAPI(title="AnyCoder API", version="1.0.0") # OAuth and environment configuration (must be before CORS) OAUTH_CLIENT_ID = os.getenv("OAUTH_CLIENT_ID", "") OAUTH_CLIENT_SECRET = os.getenv("OAUTH_CLIENT_SECRET", "") OAUTH_SCOPES = os.getenv("OAUTH_SCOPES", "openid profile manage-repos") OPENID_PROVIDER_URL = os.getenv("OPENID_PROVIDER_URL", "https://huggingface.co") SPACE_HOST = os.getenv("SPACE_HOST", "localhost:7860") # Configure CORS - allow all origins in production, specific in dev # In Docker Space, requests come from the same domain via Next.js proxy ALLOWED_ORIGINS = os.getenv("ALLOWED_ORIGINS", "*").split(",") if os.getenv("ALLOWED_ORIGINS") else [ "http://localhost:3000", "http://localhost:3001", "http://localhost:7860", f"https://{SPACE_HOST}" if SPACE_HOST and not SPACE_HOST.startswith("localhost") else "http://localhost:7860" ] app.add_middleware( CORSMiddleware, allow_origins=ALLOWED_ORIGINS if ALLOWED_ORIGINS != ["*"] else ["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], allow_origin_regex=r"https://.*\.hf\.space" if SPACE_HOST and not SPACE_HOST.startswith("localhost") else None, ) # In-memory store for OAuth states (in production, use Redis or similar) oauth_states = {} # In-memory store for user sessions user_sessions = {} # Pydantic models for request/response class CodeGenerationRequest(BaseModel): query: str language: str = "html" model_id: str = "MiniMaxAI/MiniMax-M2" provider: str = "auto" history: List[List[str]] = [] agent_mode: bool = False class DeploymentRequest(BaseModel): code: str space_name: Optional[str] = None language: str requirements: Optional[str] = None existing_repo_id: Optional[str] = None # For updating existing spaces commit_message: Optional[str] = None class AuthStatus(BaseModel): authenticated: bool username: Optional[str] = None message: str class ModelInfo(BaseModel): name: str id: str description: str class CodeGenerationResponse(BaseModel): code: str history: List[List[str]] status: str class ImportRequest(BaseModel): url: str prefer_local: bool = False class ImportResponse(BaseModel): status: str message: str code: str language: str url: str metadata: Dict # Mock authentication for development # In production, integrate with HuggingFace OAuth class MockAuth: def __init__(self, token: Optional[str] = None, username: Optional[str] = None): self.token = token self.username = username def is_authenticated(self): return bool(self.token) def get_auth_from_header(authorization: Optional[str] = None): """Extract authentication from header or session token""" if not authorization: return MockAuth(None, None) # Handle "Bearer " prefix if authorization.startswith("Bearer "): token = authorization.replace("Bearer ", "") else: token = authorization # Check if this is a session token (UUID format) if token and "-" in token and len(token) > 20: # Look up the session to get user info if token in user_sessions: session = user_sessions[token] return MockAuth(session["access_token"], session["username"]) # Dev token format: dev_token__ if token and token.startswith("dev_token_"): parts = token.split("_") username = parts[2] if len(parts) > 2 else "user" return MockAuth(token, username) # Regular token (OAuth access token passed directly) return MockAuth(token, None) @app.get("/") async def root(): """Health check endpoint""" return {"status": "ok", "message": "AnyCoder API is running"} @app.get("/api/models", response_model=List[ModelInfo]) async def get_models(): """Get available AI models""" return [ ModelInfo( name=model["name"], id=model["id"], description=model["description"] ) for model in AVAILABLE_MODELS ] @app.get("/api/languages") async def get_languages(): """Get available programming languages/frameworks""" return {"languages": LANGUAGE_CHOICES} @app.get("/api/auth/login") async def oauth_login(request: Request): """Initiate OAuth login flow""" # Generate a random state to prevent CSRF state = secrets.token_urlsafe(32) oauth_states[state] = {"timestamp": datetime.now()} # Build redirect URI protocol = "https" if SPACE_HOST and not SPACE_HOST.startswith("localhost") else "http" redirect_uri = f"{protocol}://{SPACE_HOST}/api/auth/callback" # Build authorization URL auth_url = ( f"{OPENID_PROVIDER_URL}/oauth/authorize" f"?client_id={OAUTH_CLIENT_ID}" f"&redirect_uri={urllib.parse.quote(redirect_uri)}" f"&scope={urllib.parse.quote(OAUTH_SCOPES)}" f"&state={state}" f"&response_type=code" ) return JSONResponse({"login_url": auth_url, "state": state}) @app.get("/api/auth/callback") async def oauth_callback(code: str, state: str, request: Request): """Handle OAuth callback""" # Verify state to prevent CSRF if state not in oauth_states: raise HTTPException(status_code=400, detail="Invalid state parameter") # Clean up old states oauth_states.pop(state, None) # Exchange code for tokens protocol = "https" if SPACE_HOST and not SPACE_HOST.startswith("localhost") else "http" redirect_uri = f"{protocol}://{SPACE_HOST}/api/auth/callback" # Prepare authorization header auth_string = f"{OAUTH_CLIENT_ID}:{OAUTH_CLIENT_SECRET}" auth_bytes = auth_string.encode('utf-8') auth_b64 = base64.b64encode(auth_bytes).decode('utf-8') async with httpx.AsyncClient() as client: try: token_response = await client.post( f"{OPENID_PROVIDER_URL}/oauth/token", data={ "client_id": OAUTH_CLIENT_ID, "code": code, "grant_type": "authorization_code", "redirect_uri": redirect_uri, }, headers={ "Authorization": f"Basic {auth_b64}", "Content-Type": "application/x-www-form-urlencoded", }, ) token_response.raise_for_status() token_data = token_response.json() # Get user info access_token = token_data.get("access_token") userinfo_response = await client.get( f"{OPENID_PROVIDER_URL}/oauth/userinfo", headers={"Authorization": f"Bearer {access_token}"}, ) userinfo_response.raise_for_status() user_info = userinfo_response.json() # Create session session_token = secrets.token_urlsafe(32) user_sessions[session_token] = { "access_token": access_token, "user_info": user_info, "timestamp": datetime.now(), "username": user_info.get("name") or user_info.get("preferred_username") or "user", "deployed_spaces": [] # Track deployed spaces for follow-up updates } # Redirect to frontend with session token frontend_url = f"{protocol}://{SPACE_HOST}/?session={session_token}" return RedirectResponse(url=frontend_url) except httpx.HTTPError as e: print(f"OAuth error: {e}") raise HTTPException(status_code=500, detail=f"OAuth failed: {str(e)}") @app.get("/api/auth/session") async def get_session(session: str): """Get user info from session token""" if session not in user_sessions: raise HTTPException(status_code=401, detail="Invalid session") session_data = user_sessions[session] return { "access_token": session_data["access_token"], "user_info": session_data["user_info"], } @app.get("/api/auth/status") async def auth_status(authorization: Optional[str] = Header(None)): """Check authentication status""" auth = get_auth_from_header(authorization) if auth.is_authenticated(): return AuthStatus( authenticated=True, username=auth.username, message=f"Authenticated as {auth.username}" ) return AuthStatus( authenticated=False, username=None, message="Not authenticated" ) @app.post("/api/generate") async def generate_code( request: CodeGenerationRequest, authorization: Optional[str] = Header(None) ): """Generate code based on user query - returns streaming response""" # Dev mode: No authentication required - just use server's HF_TOKEN # In production, you would check real OAuth tokens here # Extract parameters from request body query = request.query language = request.language model_id = request.model_id provider = request.provider async def event_stream() -> AsyncGenerator[str, None]: """Stream generated code chunks""" # Use the model_id from outer scope selected_model_id = model_id try: # Fast model lookup using cache selected_model = MODEL_CACHE.get(selected_model_id) if not selected_model: # Fallback to first available model (shouldn't happen often) selected_model = AVAILABLE_MODELS[0] selected_model_id = selected_model["id"] # Track generated code generated_code = "" # Fast system prompt lookup using cache system_prompt = SYSTEM_PROMPT_CACHE.get(language) if not system_prompt: # Format generic prompt only if needed system_prompt = GENERIC_SYSTEM_PROMPT.format(language=language) # Get cached client (reuses connections) client = get_cached_client(selected_model_id, provider) # Get the real model ID with provider suffixes actual_model_id = get_real_model_id(selected_model_id) # Prepare messages (optimized - no string concatenation in hot path) user_content = f"Generate a {language} application: {query}" messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": user_content} ] # Stream the response try: # Handle Mistral models with different API if is_mistral_model(selected_model_id): print("[Generate] Using Mistral SDK") stream = client.chat.stream( model=actual_model_id, messages=messages, max_tokens=10000 ) # All other models use OpenAI-compatible API else: stream = client.chat.completions.create( model=actual_model_id, messages=messages, temperature=0.7, max_tokens=10000, stream=True ) chunk_count = 0 is_mistral = is_mistral_model(selected_model_id) # Optimized chunk processing - reduce attribute lookups for chunk in stream: chunk_content = None if is_mistral: # Mistral format: chunk.data.choices[0].delta.content try: if chunk.data and chunk.data.choices and chunk.data.choices[0].delta.content: chunk_content = chunk.data.choices[0].delta.content except (AttributeError, IndexError): continue else: # OpenAI format: chunk.choices[0].delta.content try: if chunk.choices and chunk.choices[0].delta.content: chunk_content = chunk.choices[0].delta.content except (AttributeError, IndexError): continue if chunk_content: generated_code += chunk_content chunk_count += 1 # Send chunk immediately - optimized JSON serialization # Only yield control every 5 chunks to reduce overhead if chunk_count % 5 == 0: await asyncio.sleep(0) # Build event data efficiently event_data = json.dumps({ "type": "chunk", "content": chunk_content }) yield f"data: {event_data}\n\n" # Send completion event (optimized - no timestamp in hot path) completion_data = json.dumps({ "type": "complete", "code": generated_code }) yield f"data: {completion_data}\n\n" except Exception as e: # Handle rate limiting and other API errors error_message = str(e) is_rate_limit = False error_type = type(e).__name__ # Check for OpenAI SDK rate limit errors if error_type == "RateLimitError" or "rate_limit" in error_type.lower(): is_rate_limit = True # Check if this is a rate limit error (429 status code) elif hasattr(e, 'status_code') and e.status_code == 429: is_rate_limit = True # Check error message for rate limit indicators elif "429" in error_message or "rate limit" in error_message.lower() or "too many requests" in error_message.lower(): is_rate_limit = True if is_rate_limit: # Try to extract retry-after header or message retry_after = None if hasattr(e, 'response') and e.response: retry_after = e.response.headers.get('Retry-After') or e.response.headers.get('retry-after') # Also check if the error object has retry_after elif hasattr(e, 'retry_after'): retry_after = str(e.retry_after) if selected_model_id == "x-ai/grok-4.1-fast" or selected_model_id.startswith("openrouter/"): error_message = "⏱️ Rate limit exceeded for OpenRouter model" if retry_after: error_message += f". Please wait {retry_after} seconds before trying again." else: error_message += ". Free tier allows up to 20 requests per minute. Please wait a moment and try again." else: error_message = f"⏱️ Rate limit exceeded. Please wait before trying again." if retry_after: error_message += f" Retry after {retry_after} seconds." # Check for other common API errors elif hasattr(e, 'status_code'): if e.status_code == 401: error_message = "❌ Authentication failed. Please check your API key." elif e.status_code == 403: error_message = "❌ Access forbidden. Please check your API key permissions." elif e.status_code == 500 or e.status_code == 502 or e.status_code == 503: error_message = "❌ Service temporarily unavailable. Please try again later." error_data = json.dumps({ "type": "error", "message": error_message }) yield f"data: {error_data}\n\n" except Exception as e: # Fallback error handling error_message = str(e) # Check if it's a rate limit error in the exception message if "429" in error_message or "rate limit" in error_message.lower() or "too many requests" in error_message.lower(): if selected_model_id == "x-ai/grok-4.1-fast" or selected_model_id.startswith("openrouter/"): error_message = "⏱️ Rate limit exceeded for OpenRouter model. Free tier allows up to 20 requests per minute. Please wait a moment and try again." else: error_message = "⏱️ Rate limit exceeded. Please wait before trying again." error_data = json.dumps({ "type": "error", "message": f"Generation error: {error_message}" }) yield f"data: {error_data}\n\n" return StreamingResponse( event_stream(), media_type="text/event-stream", headers={ "Cache-Control": "no-cache, no-transform", "Connection": "keep-alive", "X-Accel-Buffering": "no", "Content-Encoding": "none", "Transfer-Encoding": "chunked" } ) @app.post("/api/deploy") async def deploy( request: DeploymentRequest, authorization: Optional[str] = Header(None) ): """Deploy generated code to HuggingFace Spaces""" auth = get_auth_from_header(authorization) if not auth.is_authenticated(): raise HTTPException(status_code=401, detail="Authentication required") # Check if this is dev mode (no real token) if auth.token and auth.token.startswith("dev_token_"): # In dev mode, open HF Spaces creation page from backend_deploy import detect_sdk_from_code base_url = "https://huggingface.co/new-space" sdk = detect_sdk_from_code(request.code, request.language) params = urllib.parse.urlencode({ "name": request.space_name or "my-anycoder-app", "sdk": sdk }) # Prepare file content based on language if request.language in ["html", "transformers.js", "comfyui"]: file_path = "index.html" else: file_path = "app.py" files_params = urllib.parse.urlencode({ "files[0][path]": file_path, "files[0][content]": request.code }) space_url = f"{base_url}?{params}&{files_params}" return { "success": True, "space_url": space_url, "message": "Dev mode: Please create the space manually", "dev_mode": True } # Production mode with real OAuth token try: from backend_deploy import deploy_to_huggingface_space # Get user token - should be the access_token from OAuth session user_token = auth.token if auth.token else os.getenv("HF_TOKEN") if not user_token: raise HTTPException(status_code=401, detail="No HuggingFace token available. Please sign in first.") print(f"[Deploy] Attempting deployment with token (first 10 chars): {user_token[:10]}...") print(f"[Deploy] Request parameters - language: {request.language}, space_name: {request.space_name}, existing_repo_id: {request.existing_repo_id}") # Check for existing deployed space in this session existing_repo_id = request.existing_repo_id session_token = authorization.replace("Bearer ", "") if authorization else None # If no existing_repo_id provided, check session for previously deployed spaces if not existing_repo_id and session_token and session_token in user_sessions: session = user_sessions[session_token] deployed_spaces = session.get("deployed_spaces", []) # Find the most recent space for this language for space in reversed(deployed_spaces): if space.get("language") == request.language: existing_repo_id = space.get("repo_id") print(f"[Deploy] Found existing space for {request.language}: {existing_repo_id}") break # Use the standalone deployment function print(f"[Deploy] Calling deploy_to_huggingface_space with existing_repo_id: {existing_repo_id}") success, message, space_url = deploy_to_huggingface_space( code=request.code, language=request.language, space_name=request.space_name, token=user_token, username=auth.username, description=request.description if hasattr(request, 'description') else None, private=False, existing_repo_id=existing_repo_id, commit_message=request.commit_message ) if success: # Extract repo_id from space_url repo_id = space_url.split("/spaces/")[-1] if space_url else None print(f"[Deploy] Success! Repo ID: {repo_id}") # Track deployed space in session for follow-up updates if session_token and session_token in user_sessions: if repo_id: session = user_sessions[session_token] deployed_spaces = session.get("deployed_spaces", []) # Update or add the space space_entry = { "repo_id": repo_id, "language": request.language, "timestamp": datetime.now() } # Remove old entry for same repo_id if exists deployed_spaces = [s for s in deployed_spaces if s.get("repo_id") != repo_id] deployed_spaces.append(space_entry) session["deployed_spaces"] = deployed_spaces print(f"[Deploy] Tracked space in session: {repo_id}") return { "success": True, "space_url": space_url, "message": message, "repo_id": repo_id } else: # Provide user-friendly error message based on the error if "401" in message or "Unauthorized" in message: raise HTTPException( status_code=401, detail="Authentication failed. Please sign in again with HuggingFace." ) elif "403" in message or "Forbidden" in message or "Permission" in message: raise HTTPException( status_code=403, detail="Permission denied. Your HuggingFace token may not have the required permissions (manage-repos scope)." ) else: raise HTTPException( status_code=500, detail=message ) except HTTPException: # Re-raise HTTP exceptions as-is raise except Exception as e: # Log the full error for debugging import traceback error_details = traceback.format_exc() print(f"[Deploy] Deployment error: {error_details}") raise HTTPException( status_code=500, detail=f"Deployment failed: {str(e)}" ) @app.post("/api/import", response_model=ImportResponse) async def import_project(request: ImportRequest): """ Import a project from HuggingFace Space, HuggingFace Model, or GitHub repo Supports URLs like: - https://huggingface.co/spaces/username/space-name - https://huggingface.co/username/model-name - https://github.com/username/repo-name """ try: importer = ProjectImporter() result = importer.import_from_url(request.url) # Handle model-specific prefer_local flag if request.prefer_local and result.get('metadata', {}).get('has_alternatives'): # Switch to local code if available local_code = result['metadata'].get('local_code') if local_code: result['code'] = local_code result['metadata']['code_type'] = 'local' result['message'] = result['message'].replace('inference', 'local') return ImportResponse(**result) except Exception as e: return ImportResponse( status="error", message=f"Import failed: {str(e)}", code="", language="unknown", url=request.url, metadata={} ) @app.get("/api/import/space/{username}/{space_name}") async def import_space(username: str, space_name: str): """Import a specific HuggingFace Space by username and space name""" try: importer = ProjectImporter() result = importer.import_space(username, space_name) return result except Exception as e: return { "status": "error", "message": f"Failed to import space: {str(e)}", "code": "", "language": "unknown", "url": f"https://huggingface.co/spaces/{username}/{space_name}", "metadata": {} } @app.get("/api/import/model/{path:path}") async def import_model(path: str, prefer_local: bool = False): """ Import a specific HuggingFace Model by model ID Example: /api/import/model/meta-llama/Llama-3.2-1B-Instruct """ try: importer = ProjectImporter() result = importer.import_model(path, prefer_local=prefer_local) return result except Exception as e: return { "status": "error", "message": f"Failed to import model: {str(e)}", "code": "", "language": "python", "url": f"https://huggingface.co/{path}", "metadata": {} } @app.get("/api/import/github/{owner}/{repo}") async def import_github(owner: str, repo: str): """Import a GitHub repository by owner and repo name""" try: importer = ProjectImporter() result = importer.import_github_repo(owner, repo) return result except Exception as e: return { "status": "error", "message": f"Failed to import repository: {str(e)}", "code": "", "language": "python", "url": f"https://github.com/{owner}/{repo}", "metadata": {} } @app.websocket("/ws/generate") async def websocket_generate(websocket: WebSocket): """WebSocket endpoint for real-time code generation""" await websocket.accept() try: while True: # Receive message from client data = await websocket.receive_json() query = data.get("query") language = data.get("language", "html") model_id = data.get("model_id", "MiniMaxAI/MiniMax-M2") # Send acknowledgment await websocket.send_json({ "type": "status", "message": "Generating code..." }) # Mock code generation for now await asyncio.sleep(0.5) # Send generated code in chunks sample_code = f"\n

Hello from AnyCoder!

" for i, char in enumerate(sample_code): await websocket.send_json({ "type": "chunk", "content": char, "progress": (i + 1) / len(sample_code) * 100 }) await asyncio.sleep(0.01) # Send completion await websocket.send_json({ "type": "complete", "code": sample_code }) except WebSocketDisconnect: print("Client disconnected") except Exception as e: await websocket.send_json({ "type": "error", "message": str(e) }) await websocket.close() if __name__ == "__main__": import uvicorn uvicorn.run("backend_api:app", host="0.0.0.0", port=8000, reload=True)