Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,36 +1,38 @@
|
|
| 1 |
-
#
|
| 2 |
-
import gradio as gr
|
| 3 |
import torch
|
| 4 |
import torch.nn as nn
|
| 5 |
import torch.nn.functional as F
|
| 6 |
-
import
|
|
|
|
| 7 |
from PIL import Image
|
|
|
|
| 8 |
|
| 9 |
-
# ---
|
| 10 |
class SriYantraLayer(nn.Module):
|
| 11 |
-
def __init__(self,
|
| 12 |
-
super(
|
| 13 |
self.triangle_heads = nn.ModuleList([
|
| 14 |
-
nn.Linear(
|
| 15 |
])
|
| 16 |
-
self.norm = nn.LayerNorm(
|
| 17 |
|
| 18 |
def forward(self, x):
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
return self.norm(
|
| 22 |
|
|
|
|
| 23 |
class SriYantraNet(nn.Module):
|
| 24 |
-
def __init__(self
|
| 25 |
-
super(
|
| 26 |
-
self.outer1 = SriYantraLayer(
|
| 27 |
-
self.outer2 = SriYantraLayer(
|
| 28 |
-
self.inner1 = SriYantraLayer(
|
| 29 |
-
self.inner2 = SriYantraLayer(
|
| 30 |
-
self.center = nn.Linear(
|
| 31 |
-
self.decoder1 = SriYantraLayer(
|
| 32 |
-
self.decoder2 = SriYantraLayer(
|
| 33 |
-
self.final = nn.Linear(
|
| 34 |
|
| 35 |
def forward(self, x):
|
| 36 |
x = self.outer1(x)
|
|
@@ -42,72 +44,59 @@ class SriYantraNet(nn.Module):
|
|
| 42 |
x = self.decoder2(x)
|
| 43 |
return self.final(x)
|
| 44 |
|
| 45 |
-
#
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
self.encoder = nn.Sequential(
|
| 50 |
-
nn.Conv2d(1, 16, 3, stride=2),
|
| 51 |
-
nn.ReLU(),
|
| 52 |
-
nn.Conv2d(16, 32, 3, stride=2),
|
| 53 |
-
nn.ReLU(),
|
| 54 |
-
nn.Conv2d(32, 64, 3, stride=2),
|
| 55 |
-
nn.ReLU(),
|
| 56 |
-
nn.Flatten(),
|
| 57 |
-
nn.Linear(64*6*6, out_dim),
|
| 58 |
-
nn.ReLU()
|
| 59 |
-
)
|
| 60 |
-
|
| 61 |
-
def forward(self, x):
|
| 62 |
-
return self.encoder(x)
|
| 63 |
-
|
| 64 |
-
# --- Complete Classifier ---
|
| 65 |
-
class SacredSymbolClassifier(nn.Module):
|
| 66 |
-
def __init__(self):
|
| 67 |
-
super(SacredSymbolClassifier, self).__init__()
|
| 68 |
-
self.visual = ImageToVector(out_dim=128)
|
| 69 |
-
self.symbolic = SriYantraNet(128, 256, 64, 10)
|
| 70 |
-
|
| 71 |
-
def forward(self, x):
|
| 72 |
-
v = self.visual(x)
|
| 73 |
-
return self.symbolic(v)
|
| 74 |
|
| 75 |
-
#
|
| 76 |
-
model =
|
| 77 |
model.eval()
|
| 78 |
|
| 79 |
-
# Dummy weights
|
| 80 |
with torch.no_grad():
|
| 81 |
for param in model.parameters():
|
| 82 |
param.uniform_(-0.1, 0.1)
|
| 83 |
|
| 84 |
-
#
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
])
|
| 90 |
|
| 91 |
# --- Inference Function ---
|
| 92 |
-
def
|
| 93 |
try:
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
| 95 |
with torch.no_grad():
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
pred = torch.argmax(output, dim=1).item()
|
|
|
|
| 98 |
return f"๐ฎ Predicted Symbolic Pattern Class: {pred}"
|
| 99 |
except Exception as e:
|
| 100 |
return f"โ Error during prediction: {str(e)}"
|
| 101 |
|
| 102 |
# --- Gradio Interface ---
|
| 103 |
-
|
| 104 |
-
fn=
|
| 105 |
-
inputs=
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
| 110 |
)
|
| 111 |
|
| 112 |
if __name__ == "__main__":
|
| 113 |
-
|
|
|
|
| 1 |
+
# final_app.py
|
|
|
|
| 2 |
import torch
|
| 3 |
import torch.nn as nn
|
| 4 |
import torch.nn.functional as F
|
| 5 |
+
from transformers import AutoTokenizer, AutoModel
|
| 6 |
+
from torchvision import transforms
|
| 7 |
from PIL import Image
|
| 8 |
+
import gradio as gr
|
| 9 |
|
| 10 |
+
# --- SriYantra Custom Layer ---
|
| 11 |
class SriYantraLayer(nn.Module):
|
| 12 |
+
def __init__(self, in_dim, out_dim, num_heads):
|
| 13 |
+
super().__init__()
|
| 14 |
self.triangle_heads = nn.ModuleList([
|
| 15 |
+
nn.Linear(in_dim, out_dim) for _ in range(num_heads)
|
| 16 |
])
|
| 17 |
+
self.norm = nn.LayerNorm(out_dim)
|
| 18 |
|
| 19 |
def forward(self, x):
|
| 20 |
+
outputs = [F.relu(head(x)) for head in self.triangle_heads]
|
| 21 |
+
combined = sum(outputs) / len(outputs)
|
| 22 |
+
return self.norm(combined)
|
| 23 |
|
| 24 |
+
# --- Full Model ---
|
| 25 |
class SriYantraNet(nn.Module):
|
| 26 |
+
def __init__(self):
|
| 27 |
+
super().__init__()
|
| 28 |
+
self.outer1 = SriYantraLayer(896, 256, 4)
|
| 29 |
+
self.outer2 = SriYantraLayer(256, 256, 4)
|
| 30 |
+
self.inner1 = SriYantraLayer(256, 256, 3)
|
| 31 |
+
self.inner2 = SriYantraLayer(256, 64, 3)
|
| 32 |
+
self.center = nn.Linear(64, 64)
|
| 33 |
+
self.decoder1 = SriYantraLayer(64, 256, 3)
|
| 34 |
+
self.decoder2 = SriYantraLayer(256, 256, 4)
|
| 35 |
+
self.final = nn.Linear(256, 10)
|
| 36 |
|
| 37 |
def forward(self, x):
|
| 38 |
x = self.outer1(x)
|
|
|
|
| 44 |
x = self.decoder2(x)
|
| 45 |
return self.final(x)
|
| 46 |
|
| 47 |
+
# Load tokenizer and text model
|
| 48 |
+
print("Loading IndicBERTv2...")
|
| 49 |
+
tokenizer = AutoTokenizer.from_pretrained("ai4bharat/IndicBERTv2-MLM-only")
|
| 50 |
+
sanskrit_model = AutoModel.from_pretrained("ai4bharat/IndicBERTv2-MLM-only")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
+
# Load symbol classifier
|
| 53 |
+
model = SriYantraNet()
|
| 54 |
model.eval()
|
| 55 |
|
| 56 |
+
# Dummy weights (replace with trained weights if available)
|
| 57 |
with torch.no_grad():
|
| 58 |
for param in model.parameters():
|
| 59 |
param.uniform_(-0.1, 0.1)
|
| 60 |
|
| 61 |
+
# Image preprocessing
|
| 62 |
+
image_transform = transforms.Compose([
|
| 63 |
+
transforms.Resize((64, 64)),
|
| 64 |
+
transforms.Grayscale(),
|
| 65 |
+
transforms.ToTensor()
|
| 66 |
])
|
| 67 |
|
| 68 |
# --- Inference Function ---
|
| 69 |
+
def predict(image, sanskrit_text):
|
| 70 |
try:
|
| 71 |
+
image = image.convert("RGB")
|
| 72 |
+
img_tensor = image_transform(image).view(1, -1)[:, :128] # shape: [1, 128]
|
| 73 |
+
|
| 74 |
+
tokens = tokenizer(sanskrit_text, return_tensors="pt", truncation=True, padding=True)
|
| 75 |
with torch.no_grad():
|
| 76 |
+
text_emb = sanskrit_model(**tokens).last_hidden_state.mean(dim=1) # shape: [1, 768]
|
| 77 |
+
|
| 78 |
+
fused = torch.cat([img_tensor, text_emb], dim=1) # shape: [1, 896]
|
| 79 |
+
|
| 80 |
+
with torch.no_grad():
|
| 81 |
+
output = model(fused)
|
| 82 |
pred = torch.argmax(output, dim=1).item()
|
| 83 |
+
|
| 84 |
return f"๐ฎ Predicted Symbolic Pattern Class: {pred}"
|
| 85 |
except Exception as e:
|
| 86 |
return f"โ Error during prediction: {str(e)}"
|
| 87 |
|
| 88 |
# --- Gradio Interface ---
|
| 89 |
+
iface = gr.Interface(
|
| 90 |
+
fn=predict,
|
| 91 |
+
inputs=[
|
| 92 |
+
gr.Image(type="pil", label="Upload Symbol Image"),
|
| 93 |
+
gr.Textbox(label="Enter Sanskrit Text")
|
| 94 |
+
],
|
| 95 |
+
outputs=gr.Textbox(label="Prediction"),
|
| 96 |
+
title="๐บ SriYantra-Net: Symbolic Pattern Classifier",
|
| 97 |
+
description="Upload a sacred symbol image and Sanskrit phrase to classify symbolic pattern using a fused image-text deep network.",
|
| 98 |
+
theme="default"
|
| 99 |
)
|
| 100 |
|
| 101 |
if __name__ == "__main__":
|
| 102 |
+
iface.launch()
|