File size: 74,554 Bytes
9507532
 
 
 
 
 
 
 
 
 
 
 
37de32d
9507532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37de32d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9507532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
"""
Utilities for geometry operations.

References: DUSt3R, MoGe
"""

from numbers import Number
from typing import Tuple, Union

import einops as ein
import numpy as np
import torch
import torch.nn.functional as F

from mapanything.utils.misc import invalid_to_zeros
from mapanything.utils.warnings import no_warnings


def depthmap_to_camera_frame(depthmap, intrinsics):
    """
    Convert depth image to a pointcloud in camera frame.

    Args:
        - depthmap: HxW or BxHxW torch tensor
        - intrinsics: 3x3 or Bx3x3 torch tensor

    Returns:
        pointmap in camera frame (HxWx3 or BxHxWx3 tensor), and a mask specifying valid pixels.
    """
    # Add batch dimension if not present
    if depthmap.dim() == 2:
        depthmap = depthmap.unsqueeze(0)
        intrinsics = intrinsics.unsqueeze(0)
        squeeze_batch_dim = True
    else:
        squeeze_batch_dim = False

    batch_size, height, width = depthmap.shape
    device = depthmap.device

    # Compute 3D point in camera frame associated with each pixel
    x_grid, y_grid = torch.meshgrid(
        torch.arange(width, device=device).float(),
        torch.arange(height, device=device).float(),
        indexing="xy",
    )
    x_grid = x_grid.unsqueeze(0).expand(batch_size, -1, -1)
    y_grid = y_grid.unsqueeze(0).expand(batch_size, -1, -1)

    fx = intrinsics[:, 0, 0].view(-1, 1, 1)
    fy = intrinsics[:, 1, 1].view(-1, 1, 1)
    cx = intrinsics[:, 0, 2].view(-1, 1, 1)
    cy = intrinsics[:, 1, 2].view(-1, 1, 1)

    depth_z = depthmap
    xx = (x_grid - cx) * depth_z / fx
    yy = (y_grid - cy) * depth_z / fy
    pts3d_cam = torch.stack((xx, yy, depth_z), dim=-1)

    # Compute mask of valid non-zero depth pixels
    valid_mask = depthmap > 0.0

    # Remove batch dimension if it was added
    if squeeze_batch_dim:
        pts3d_cam = pts3d_cam.squeeze(0)
        valid_mask = valid_mask.squeeze(0)

    return pts3d_cam, valid_mask


def depthmap_to_world_frame(depthmap, intrinsics, camera_pose=None):
    """
    Convert depth image to a pointcloud in world frame.

    Args:
        - depthmap: HxW or BxHxW torch tensor
        - intrinsics: 3x3 or Bx3x3 torch tensor
        - camera_pose: 4x4 or Bx4x4 torch tensor

    Returns:
        pointmap in world frame (HxWx3 or BxHxWx3 tensor), and a mask specifying valid pixels.
    """
    pts3d_cam, valid_mask = depthmap_to_camera_frame(depthmap, intrinsics)

    if camera_pose is not None:
        # Add batch dimension if not present
        if camera_pose.dim() == 2:
            camera_pose = camera_pose.unsqueeze(0)
            pts3d_cam = pts3d_cam.unsqueeze(0)
            squeeze_batch_dim = True
        else:
            squeeze_batch_dim = False

        # Convert points from camera frame to world frame
        pts3d_cam_homo = torch.cat(
            [pts3d_cam, torch.ones_like(pts3d_cam[..., :1])], dim=-1
        )
        pts3d_world = ein.einsum(
            camera_pose, pts3d_cam_homo, "b i k, b h w k -> b h w i"
        )
        pts3d_world = pts3d_world[..., :3]

        # Remove batch dimension if it was added
        if squeeze_batch_dim:
            pts3d_world = pts3d_world.squeeze(0)
    else:
        pts3d_world = pts3d_cam

    return pts3d_world, valid_mask


def transform_pts3d(pts3d, transformation):
    """
    Transform 3D points using a 4x4 transformation matrix.

    Args:
        - pts3d: HxWx3 or BxHxWx3 torch tensor
        - transformation: 4x4 or Bx4x4 torch tensor

    Returns:
        transformed points (HxWx3 or BxHxWx3 tensor)
    """
    # Add batch dimension if not present
    if pts3d.dim() == 3:
        pts3d = pts3d.unsqueeze(0)
        transformation = transformation.unsqueeze(0)
        squeeze_batch_dim = True
    else:
        squeeze_batch_dim = False

    # Convert points to homogeneous coordinates
    pts3d_homo = torch.cat([pts3d, torch.ones_like(pts3d[..., :1])], dim=-1)

    # Transform points
    transformed_pts3d = ein.einsum(
        transformation, pts3d_homo, "b i k, b h w k -> b h w i"
    )
    transformed_pts3d = transformed_pts3d[..., :3]

    # Remove batch dimension if it was added
    if squeeze_batch_dim:
        transformed_pts3d = transformed_pts3d.squeeze(0)

    return transformed_pts3d


def project_pts3d_to_image(pts3d, intrinsics, return_z_dim):
    """
    Project 3D points to image plane (assumes pinhole camera model with no distortion).

    Args:
        - pts3d: HxWx3 or BxHxWx3 torch tensor
        - intrinsics: 3x3 or Bx3x3 torch tensor
        - return_z_dim: bool, whether to return the third dimension of the projected points

    Returns:
        projected points (HxWx2)
    """
    if pts3d.dim() == 3:
        pts3d = pts3d.unsqueeze(0)
        intrinsics = intrinsics.unsqueeze(0)
        squeeze_batch_dim = True
    else:
        squeeze_batch_dim = False

    # Project points to image plane
    projected_pts2d = ein.einsum(intrinsics, pts3d, "b i k, b h w k -> b h w i")
    projected_pts2d[..., :2] /= projected_pts2d[..., 2].unsqueeze(-1).clamp(min=1e-6)

    # Remove the z dimension if not required
    if not return_z_dim:
        projected_pts2d = projected_pts2d[..., :2]

    # Remove batch dimension if it was added
    if squeeze_batch_dim:
        projected_pts2d = projected_pts2d.squeeze(0)

    return projected_pts2d


def get_rays_in_camera_frame(intrinsics, height, width, normalize_to_unit_sphere):
    """
    Convert camera intrinsics to a raymap (ray origins + directions) in camera frame.
    Note: Currently only supports pinhole camera model.

    Args:
        - intrinsics: 3x3 or Bx3x3 torch tensor
        - height: int
        - width: int
        - normalize_to_unit_sphere: bool

    Returns:
        - ray_origins: (HxWx3 or BxHxWx3) tensor
        - ray_directions: (HxWx3 or BxHxWx3) tensor
    """
    # Add batch dimension if not present
    if intrinsics.dim() == 2:
        intrinsics = intrinsics.unsqueeze(0)
        squeeze_batch_dim = True
    else:
        squeeze_batch_dim = False

    batch_size = intrinsics.shape[0]
    device = intrinsics.device

    # Compute rays in camera frame associated with each pixel
    x_grid, y_grid = torch.meshgrid(
        torch.arange(width, device=device).float(),
        torch.arange(height, device=device).float(),
        indexing="xy",
    )
    x_grid = x_grid.unsqueeze(0).expand(batch_size, -1, -1)
    y_grid = y_grid.unsqueeze(0).expand(batch_size, -1, -1)

    fx = intrinsics[:, 0, 0].view(-1, 1, 1)
    fy = intrinsics[:, 1, 1].view(-1, 1, 1)
    cx = intrinsics[:, 0, 2].view(-1, 1, 1)
    cy = intrinsics[:, 1, 2].view(-1, 1, 1)

    ray_origins = torch.zeros((batch_size, height, width, 3), device=device)
    xx = (x_grid - cx) / fx
    yy = (y_grid - cy) / fy
    ray_directions = torch.stack((xx, yy, torch.ones_like(xx)), dim=-1)

    # Normalize ray directions to unit sphere if required (else rays will lie on unit plane)
    if normalize_to_unit_sphere:
        ray_directions = ray_directions / torch.norm(
            ray_directions, dim=-1, keepdim=True
        )

    # Remove batch dimension if it was added
    if squeeze_batch_dim:
        ray_origins = ray_origins.squeeze(0)
        ray_directions = ray_directions.squeeze(0)

    return ray_origins, ray_directions


def get_rays_in_world_frame(
    intrinsics, height, width, normalize_to_unit_sphere, camera_pose=None
):
    """
    Convert camera intrinsics & camera_pose (if provided) to a raymap (ray origins + directions) in camera or world frame (if camera_pose is provided).
    Note: Currently only supports pinhole camera model.

    Args:
        - intrinsics: 3x3 or Bx3x3 torch tensor
        - height: int
        - width: int
        - normalize_to_unit_sphere: bool
        - camera_pose: 4x4 or Bx4x4 torch tensor

    Returns:
        - ray_origins: (HxWx3 or BxHxWx3) tensor
        - ray_directions: (HxWx3 or BxHxWx3) tensor
    """
    # Get rays in camera frame
    ray_origins, ray_directions = get_rays_in_camera_frame(
        intrinsics, height, width, normalize_to_unit_sphere
    )

    if camera_pose is not None:
        # Add batch dimension if not present
        if camera_pose.dim() == 2:
            camera_pose = camera_pose.unsqueeze(0)
            ray_origins = ray_origins.unsqueeze(0)
            ray_directions = ray_directions.unsqueeze(0)
            squeeze_batch_dim = True
        else:
            squeeze_batch_dim = False

        # Convert rays from camera frame to world frame
        ray_origins_homo = torch.cat(
            [ray_origins, torch.ones_like(ray_origins[..., :1])], dim=-1
        )
        ray_directions_homo = torch.cat(
            [ray_directions, torch.zeros_like(ray_directions[..., :1])], dim=-1
        )
        ray_origins_world = ein.einsum(
            camera_pose, ray_origins_homo, "b i k, b h w k -> b h w i"
        )
        ray_directions_world = ein.einsum(
            camera_pose, ray_directions_homo, "b i k, b h w k -> b h w i"
        )
        ray_origins_world = ray_origins_world[..., :3]
        ray_directions_world = ray_directions_world[..., :3]

        # Remove batch dimension if it was added
        if squeeze_batch_dim:
            ray_origins_world = ray_origins_world.squeeze(0)
            ray_directions_world = ray_directions_world.squeeze(0)
    else:
        ray_origins_world = ray_origins
        ray_directions_world = ray_directions

    return ray_origins_world, ray_directions_world


def recover_pinhole_intrinsics_from_ray_directions(
    ray_directions, use_geometric_calculation=False
):
    """
    Recover pinhole camera intrinsics from ray directions, supporting both batched and non-batched inputs.

    Args:
        ray_directions: Tensor of shape [H, W, 3] or [B, H, W, 3] containing unit normalized ray directions

    Returns:
        Dictionary containing camera intrinsics (fx, fy, cx, cy) as tensors
    """
    # Add batch dimension if not present
    if ray_directions.dim() == 3:  # [H, W, 3]
        ray_directions = ray_directions.unsqueeze(0)  # [1, H, W, 3]
        squeeze_batch_dim = True
    else:
        squeeze_batch_dim = False

    batch_size, height, width, _ = ray_directions.shape
    device = ray_directions.device

    # Create pixel coordinate grid
    x_grid, y_grid = torch.meshgrid(
        torch.arange(width, device=device).float(),
        torch.arange(height, device=device).float(),
        indexing="xy",
    )

    # Expand grid for all batches
    x_grid = x_grid.unsqueeze(0).expand(batch_size, -1, -1)  # [B, H, W]
    y_grid = y_grid.unsqueeze(0).expand(batch_size, -1, -1)  # [B, H, W]

    # Determine if high resolution or not
    is_high_res = height * width > 1000000

    if is_high_res or use_geometric_calculation:
        # For high-resolution cases, use direct geometric calculation
        # Define key points
        center_h, center_w = height // 2, width // 2
        quarter_w, three_quarter_w = width // 4, 3 * width // 4
        quarter_h, three_quarter_h = height // 4, 3 * height // 4

        # Get rays at key points
        center_rays = ray_directions[:, center_h, center_w, :].clone()  # [B, 3]
        left_rays = ray_directions[:, center_h, quarter_w, :].clone()  # [B, 3]
        right_rays = ray_directions[:, center_h, three_quarter_w, :].clone()  # [B, 3]
        top_rays = ray_directions[:, quarter_h, center_w, :].clone()  # [B, 3]
        bottom_rays = ray_directions[:, three_quarter_h, center_w, :].clone()  # [B, 3]

        # Normalize rays to have dz = 1
        center_rays = center_rays / center_rays[:, 2].unsqueeze(1)  # [B, 3]
        left_rays = left_rays / left_rays[:, 2].unsqueeze(1)  # [B, 3]
        right_rays = right_rays / right_rays[:, 2].unsqueeze(1)  # [B, 3]
        top_rays = top_rays / top_rays[:, 2].unsqueeze(1)  # [B, 3]
        bottom_rays = bottom_rays / bottom_rays[:, 2].unsqueeze(1)  # [B, 3]

        # Calculate fx directly (vectorized across batch)
        fx_left = (quarter_w - center_w) / (left_rays[:, 0] - center_rays[:, 0])
        fx_right = (three_quarter_w - center_w) / (right_rays[:, 0] - center_rays[:, 0])
        fx = (fx_left + fx_right) / 2  # Average for robustness

        # Calculate cx
        cx = center_w - fx * center_rays[:, 0]

        # Calculate fy and cy
        fy_top = (quarter_h - center_h) / (top_rays[:, 1] - center_rays[:, 1])
        fy_bottom = (three_quarter_h - center_h) / (
            bottom_rays[:, 1] - center_rays[:, 1]
        )
        fy = (fy_top + fy_bottom) / 2

        cy = center_h - fy * center_rays[:, 1]
    else:
        # For standard resolution, use regression with sampling for efficiency
        # Sample a grid of points (but more dense than for high-res)
        step_h = max(1, height // 50)
        step_w = max(1, width // 50)

        h_indices = torch.arange(0, height, step_h, device=device)
        w_indices = torch.arange(0, width, step_w, device=device)

        # Extract subset of coordinates
        x_sampled = x_grid[:, h_indices[:, None], w_indices[None, :]]  # [B, H', W']
        y_sampled = y_grid[:, h_indices[:, None], w_indices[None, :]]  # [B, H', W']
        rays_sampled = ray_directions[
            :, h_indices[:, None], w_indices[None, :], :
        ]  # [B, H', W', 3]

        # Reshape for linear regression
        x_flat = x_sampled.reshape(batch_size, -1)  # [B, N]
        y_flat = y_sampled.reshape(batch_size, -1)  # [B, N]

        # Extract ray direction components
        dx = rays_sampled[..., 0].reshape(batch_size, -1)  # [B, N]
        dy = rays_sampled[..., 1].reshape(batch_size, -1)  # [B, N]
        dz = rays_sampled[..., 2].reshape(batch_size, -1)  # [B, N]

        # Compute ratios for linear regression
        ratio_x = dx / dz  # [B, N]
        ratio_y = dy / dz  # [B, N]

        # Since torch.linalg.lstsq doesn't support batched input, we'll use a different approach
        # For x-direction: x = cx + fx * (dx/dz)
        # We can solve this using normal equations: A^T A x = A^T b
        # Create design matrices
        ones = torch.ones_like(x_flat)  # [B, N]
        A_x = torch.stack([ones, ratio_x], dim=2)  # [B, N, 2]
        b_x = x_flat.unsqueeze(2)  # [B, N, 1]

        # Compute A^T A and A^T b for each batch
        ATA_x = torch.bmm(A_x.transpose(1, 2), A_x)  # [B, 2, 2]
        ATb_x = torch.bmm(A_x.transpose(1, 2), b_x)  # [B, 2, 1]

        # Solve the system for each batch
        solution_x = torch.linalg.solve(ATA_x, ATb_x).squeeze(2)  # [B, 2]
        cx, fx = solution_x[:, 0], solution_x[:, 1]

        # Repeat for y-direction
        A_y = torch.stack([ones, ratio_y], dim=2)  # [B, N, 2]
        b_y = y_flat.unsqueeze(2)  # [B, N, 1]

        ATA_y = torch.bmm(A_y.transpose(1, 2), A_y)  # [B, 2, 2]
        ATb_y = torch.bmm(A_y.transpose(1, 2), b_y)  # [B, 2, 1]

        solution_y = torch.linalg.solve(ATA_y, ATb_y).squeeze(2)  # [B, 2]
        cy, fy = solution_y[:, 0], solution_y[:, 1]

    # Create intrinsics matrices
    batch_size = fx.shape[0]
    intrinsics = torch.zeros(batch_size, 3, 3, device=ray_directions.device)

    # Fill in the intrinsics matrices
    intrinsics[:, 0, 0] = fx  # focal length x
    intrinsics[:, 1, 1] = fy  # focal length y
    intrinsics[:, 0, 2] = cx  # principal point x
    intrinsics[:, 1, 2] = cy  # principal point y
    intrinsics[:, 2, 2] = 1.0  # bottom-right element is always 1

    # Remove batch dimension if it was added
    if squeeze_batch_dim:
        intrinsics = intrinsics.squeeze(0)

    return intrinsics


def transform_rays(ray_origins, ray_directions, transformation):
    """
    Transform 6D rays (ray origins and ray directions) using a 4x4 transformation matrix.

    Args:
        - ray_origins: HxWx3 or BxHxWx3 torch tensor
        - ray_directions: HxWx3 or BxHxWx3 torch tensor
        - transformation: 4x4 or Bx4x4 torch tensor
        - normalize_to_unit_sphere: bool, whether to normalize the transformed ray directions to unit length

    Returns:
        transformed ray_origins (HxWx3 or BxHxWx3 tensor) and ray_directions (HxWx3 or BxHxWx3 tensor)
    """
    # Add batch dimension if not present
    if ray_origins.dim() == 3:
        ray_origins = ray_origins.unsqueeze(0)
        ray_directions = ray_directions.unsqueeze(0)
        transformation = transformation.unsqueeze(0)
        squeeze_batch_dim = True
    else:
        squeeze_batch_dim = False

    # Transform ray origins and directions
    ray_origins_homo = torch.cat(
        [ray_origins, torch.ones_like(ray_origins[..., :1])], dim=-1
    )
    ray_directions_homo = torch.cat(
        [ray_directions, torch.zeros_like(ray_directions[..., :1])], dim=-1
    )
    transformed_ray_origins = ein.einsum(
        transformation, ray_origins_homo, "b i k, b h w k -> b h w i"
    )
    transformed_ray_directions = ein.einsum(
        transformation, ray_directions_homo, "b i k, b h w k -> b h w i"
    )
    transformed_ray_origins = transformed_ray_origins[..., :3]
    transformed_ray_directions = transformed_ray_directions[..., :3]

    # Remove batch dimension if it was added
    if squeeze_batch_dim:
        transformed_ray_origins = transformed_ray_origins.squeeze(0)
        transformed_ray_directions = transformed_ray_directions.squeeze(0)

    return transformed_ray_origins, transformed_ray_directions


def convert_z_depth_to_depth_along_ray(z_depth, intrinsics):
    """
    Convert z-depth image to depth along camera rays.

    Args:
        - z_depth: HxW or BxHxW torch tensor
        - intrinsics: 3x3 or Bx3x3 torch tensor

    Returns:
        - depth_along_ray: HxW or BxHxW torch tensor
    """
    # Add batch dimension if not present
    if z_depth.dim() == 2:
        z_depth = z_depth.unsqueeze(0)
        intrinsics = intrinsics.unsqueeze(0)
        squeeze_batch_dim = True
    else:
        squeeze_batch_dim = False

    # Get rays in camera frame
    batch_size, height, width = z_depth.shape
    _, ray_directions = get_rays_in_camera_frame(
        intrinsics, height, width, normalize_to_unit_sphere=False
    )

    # Compute depth along ray
    pts3d_cam = z_depth[..., None] * ray_directions
    depth_along_ray = torch.norm(pts3d_cam, dim=-1)

    # Remove batch dimension if it was added
    if squeeze_batch_dim:
        depth_along_ray = depth_along_ray.squeeze(0)

    return depth_along_ray


def convert_raymap_z_depth_quats_to_pointmap(ray_origins, ray_directions, depth, quats):
    """
    Convert raymap (ray origins + directions on unit plane), z-depth and
    unit quaternions (representing rotation) to a pointmap in world frame.

    Args:
        - ray_origins: (HxWx3 or BxHxWx3) torch tensor
        - ray_directions: (HxWx3 or BxHxWx3) torch tensor
        - depth: (HxWx1 or BxHxWx1) torch tensor
        - quats: (HxWx4 or BxHxWx4) torch tensor (unit quaternions and notation is (x, y, z, w))

    Returns:
        - pointmap: (HxWx3 or BxHxWx3) torch tensor
    """
    # Add batch dimension if not present
    if ray_origins.dim() == 3:
        ray_origins = ray_origins.unsqueeze(0)
        ray_directions = ray_directions.unsqueeze(0)
        depth = depth.unsqueeze(0)
        quats = quats.unsqueeze(0)
        squeeze_batch_dim = True
    else:
        squeeze_batch_dim = False

    batch_size, height, width, _ = depth.shape
    device = depth.device

    # Normalize the quaternions to ensure they are unit quaternions
    quats = quats / torch.norm(quats, dim=-1, keepdim=True)

    # Convert quaternions to pixel-wise rotation matrices
    qx, qy, qz, qw = quats[..., 0], quats[..., 1], quats[..., 2], quats[..., 3]
    rot_mat = (
        torch.stack(
            [
                qw**2 + qx**2 - qy**2 - qz**2,
                2 * (qx * qy - qw * qz),
                2 * (qw * qy + qx * qz),
                2 * (qw * qz + qx * qy),
                qw**2 - qx**2 + qy**2 - qz**2,
                2 * (qy * qz - qw * qx),
                2 * (qx * qz - qw * qy),
                2 * (qw * qx + qy * qz),
                qw**2 - qx**2 - qy**2 + qz**2,
            ],
            dim=-1,
        )
        .reshape(batch_size, height, width, 3, 3)
        .to(device)
    )

    # Compute 3D points in local camera frame
    pts3d_local = depth * ray_directions

    # Rotate the local points using the quaternions
    rotated_pts3d_local = ein.einsum(
        rot_mat, pts3d_local, "b h w i k, b h w k -> b h w i"
    )

    # Compute 3D point in world frame associated with each pixel
    pts3d = ray_origins + rotated_pts3d_local

    # Remove batch dimension if it was added
    if squeeze_batch_dim:
        pts3d = pts3d.squeeze(0)

    return pts3d


def quaternion_to_rotation_matrix(quat):
    """
    Convert a quaternion into a 3x3 rotation matrix.

    Args:
        - quat: 4 or Bx4 torch tensor (unit quaternions and notation is (x, y, z, w))

    Returns:
        - rot_matrix: 3x3 or Bx3x3 torch tensor
    """
    if quat.dim() == 1:
        quat = quat.unsqueeze(0)
        squeeze_batch_dim = True
    else:
        squeeze_batch_dim = False

    # Ensure the quaternion is normalized
    quat = quat / quat.norm(dim=1, keepdim=True)
    x, y, z, w = quat.unbind(dim=1)

    # Compute the rotation matrix elements
    xx = x * x
    yy = y * y
    zz = z * z
    xy = x * y
    xz = x * z
    yz = y * z
    wx = w * x
    wy = w * y
    wz = w * z

    # Construct the rotation matrix
    rot_matrix = torch.stack(
        [
            1 - 2 * (yy + zz),
            2 * (xy - wz),
            2 * (xz + wy),
            2 * (xy + wz),
            1 - 2 * (xx + zz),
            2 * (yz - wx),
            2 * (xz - wy),
            2 * (yz + wx),
            1 - 2 * (xx + yy),
        ],
        dim=1,
    ).view(-1, 3, 3)

    # Squeeze batch dimension if it was unsqueezed
    if squeeze_batch_dim:
        rot_matrix = rot_matrix.squeeze(0)

    return rot_matrix


def rotation_matrix_to_quaternion(matrix: torch.Tensor) -> torch.Tensor:
    """
    Convert rotations given as rotation matrices to quaternions.

    Args:
        matrix: Rotation matrices as tensor of shape (..., 3, 3).

    Returns:
        quaternions with real part last, as tensor of shape (..., 4).
        Quaternion Order: XYZW or say ijkr, scalar-last
    """
    if matrix.size(-1) != 3 or matrix.size(-2) != 3:
        raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.")

    batch_dim = matrix.shape[:-2]
    m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind(
        matrix.reshape(batch_dim + (9,)), dim=-1
    )

    q_abs = _sqrt_positive_part(
        torch.stack(
            [
                1.0 + m00 + m11 + m22,
                1.0 + m00 - m11 - m22,
                1.0 - m00 + m11 - m22,
                1.0 - m00 - m11 + m22,
            ],
            dim=-1,
        )
    )

    # we produce the desired quaternion multiplied by each of r, i, j, k
    quat_by_rijk = torch.stack(
        [
            torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1),
            torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1),
            torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1),
            torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1),
        ],
        dim=-2,
    )

    # We floor here at 0.1 but the exact level is not important; if q_abs is small,
    # the candidate won't be picked.
    flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device)
    quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr))

    # if not for numerical problems, quat_candidates[i] should be same (up to a sign),
    # forall i; we pick the best-conditioned one (with the largest denominator)
    out = quat_candidates[
        F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, :
    ].reshape(batch_dim + (4,))

    # Convert from rijk to ijkr
    out = out[..., [1, 2, 3, 0]]

    out = standardize_quaternion(out)

    return out


def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor:
    """
    Returns torch.sqrt(torch.max(0, x))
    but with a zero subgradient where x is 0.
    """
    ret = torch.zeros_like(x)
    positive_mask = x > 0
    if torch.is_grad_enabled():
        ret[positive_mask] = torch.sqrt(x[positive_mask])
    else:
        ret = torch.where(positive_mask, torch.sqrt(x), ret)
    return ret


def standardize_quaternion(quaternions: torch.Tensor) -> torch.Tensor:
    """
    Convert a unit quaternion to a standard form: one in which the real
    part is non negative.

    Args:
        quaternions: Quaternions with real part last,
            as tensor of shape (..., 4).

    Returns:
        Standardized quaternions as tensor of shape (..., 4).
    """
    return torch.where(quaternions[..., 3:4] < 0, -quaternions, quaternions)


def quaternion_inverse(quat):
    """
    Compute the inverse of a quaternion.

    Args:
        - quat: 4 or Bx4 torch tensor (unit quaternions and notation is (x, y, z, w))

    Returns:
        - inv_quat: 4 or Bx4 torch tensor (unit quaternions and notation is (x, y, z, w))
    """
    # Unsqueeze batch dimension if not present
    if quat.dim() == 1:
        quat = quat.unsqueeze(0)
        squeeze_batch_dim = True
    else:
        squeeze_batch_dim = False

    # Compute the inverse
    quat_conj = quat.clone()
    quat_conj[:, :3] = -quat_conj[:, :3]
    quat_norm = torch.sum(quat * quat, dim=1, keepdim=True)
    inv_quat = quat_conj / quat_norm

    # Squeeze batch dimension if it was unsqueezed
    if squeeze_batch_dim:
        inv_quat = inv_quat.squeeze(0)

    return inv_quat


def quaternion_multiply(q1, q2):
    """
    Multiply two quaternions.

    Args:
        - q1: 4 or Bx4 torch tensor (unit quaternions and notation is (x, y, z, w))
        - q2: 4 or Bx4 torch tensor (unit quaternions and notation is (x, y, z, w))

    Returns:
        - qm: 4 or Bx4 torch tensor (unit quaternions and notation is (x, y, z, w))
    """
    # Unsqueeze batch dimension if not present
    if q1.dim() == 1:
        q1 = q1.unsqueeze(0)
        q2 = q2.unsqueeze(0)
        squeeze_batch_dim = True
    else:
        squeeze_batch_dim = False

    # Unbind the quaternions
    x1, y1, z1, w1 = q1.unbind(dim=1)
    x2, y2, z2, w2 = q2.unbind(dim=1)

    # Compute the product
    x = w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2
    y = w1 * y2 - x1 * z2 + y1 * w2 + z1 * x2
    z = w1 * z2 + x1 * y2 - y1 * x2 + z1 * w2
    w = w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2

    # Stack the components
    qm = torch.stack([x, y, z, w], dim=1)

    # Squeeze batch dimension if it was unsqueezed
    if squeeze_batch_dim:
        qm = qm.squeeze(0)

    return qm


def transform_pose_using_quats_and_trans_2_to_1(quats1, trans1, quats2, trans2):
    """
    Transform quats and translation of pose2 from absolute frame (pose2 to world) to relative frame (pose2 to pose1).

    Args:
        - quats1: 4 or Bx4 torch tensor (unit quaternions and notation is (x, y, z, w))
        - trans1: 3 or Bx3 torch tensor
        - quats2: 4 or Bx4 torch tensor (unit quaternions and notation is (x, y, z, w))
        - trans2: 3 or Bx3 torch tensor

    Returns:
        - quats: 4 or Bx4 torch tensor (unit quaternions and notation is (x, y, z, w))
        - trans: 3 or Bx3 torch tensor
    """
    # Unsqueeze batch dimension if not present
    if quats1.dim() == 1:
        quats1 = quats1.unsqueeze(0)
        trans1 = trans1.unsqueeze(0)
        quats2 = quats2.unsqueeze(0)
        trans2 = trans2.unsqueeze(0)
        squeeze_batch_dim = True
    else:
        squeeze_batch_dim = False

    # Compute the inverse of view1's pose
    inv_quats1 = quaternion_inverse(quats1)
    R1_inv = quaternion_to_rotation_matrix(inv_quats1)
    t1_inv = -1 * ein.einsum(R1_inv, trans1, "b i j, b j -> b i")

    # Transform view2's pose to view1's frame
    quats = quaternion_multiply(inv_quats1, quats2)
    trans = ein.einsum(R1_inv, trans2, "b i j, b j -> b i") + t1_inv

    # Squeeze batch dimension if it was unsqueezed
    if squeeze_batch_dim:
        quats = quats.squeeze(0)
        trans = trans.squeeze(0)

    return quats, trans


def convert_ray_dirs_depth_along_ray_pose_trans_quats_to_pointmap(
    ray_directions, depth_along_ray, pose_trans, pose_quats
):
    """
    Convert ray directions, depth along ray, pose translation, and
    unit quaternions (representing pose rotation) to a pointmap in world frame.

    Args:
        - ray_directions: (HxWx3 or BxHxWx3) torch tensor
        - depth_along_ray: (HxWx1 or BxHxWx1) torch tensor
        - pose_trans: (3 or Bx3) torch tensor
        - pose_quats: (4 or Bx4) torch tensor (unit quaternions and notation is (x, y, z, w))

    Returns:
        - pointmap: (HxWx3 or BxHxWx3) torch tensor
    """
    # Add batch dimension if not present
    if ray_directions.dim() == 3:
        ray_directions = ray_directions.unsqueeze(0)
        depth_along_ray = depth_along_ray.unsqueeze(0)
        pose_trans = pose_trans.unsqueeze(0)
        pose_quats = pose_quats.unsqueeze(0)
        squeeze_batch_dim = True
    else:
        squeeze_batch_dim = False

    batch_size, height, width, _ = depth_along_ray.shape
    device = depth_along_ray.device

    # Normalize the quaternions to ensure they are unit quaternions
    pose_quats = pose_quats / torch.norm(pose_quats, dim=-1, keepdim=True)

    # Convert quaternions to rotation matrices (B x 3 x 3)
    rot_mat = quaternion_to_rotation_matrix(pose_quats)

    # Get pose matrix (B x 4 x 4)
    pose_mat = torch.eye(4, device=device).unsqueeze(0).repeat(batch_size, 1, 1)
    pose_mat[:, :3, :3] = rot_mat
    pose_mat[:, :3, 3] = pose_trans

    # Compute 3D points in local camera frame
    pts3d_local = depth_along_ray * ray_directions

    # Compute 3D points in world frame
    pts3d_homo = torch.cat([pts3d_local, torch.ones_like(pts3d_local[..., :1])], dim=-1)
    pts3d_world = ein.einsum(pose_mat, pts3d_homo, "b i k, b h w k -> b h w i")
    pts3d_world = pts3d_world[..., :3]

    # Remove batch dimension if it was added
    if squeeze_batch_dim:
        pts3d_world = pts3d_world.squeeze(0)

    return pts3d_world


def xy_grid(
    W,
    H,
    device=None,
    origin=(0, 0),
    unsqueeze=None,
    cat_dim=-1,
    homogeneous=False,
    **arange_kw,
):
    """
    Generate a coordinate grid of shape (H,W,2) or (H,W,3) if homogeneous=True.

    Args:
        W (int): Width of the grid
        H (int): Height of the grid
        device (torch.device, optional): Device to place the grid on. If None, uses numpy arrays
        origin (tuple, optional): Origin coordinates (x,y) for the grid. Default is (0,0)
        unsqueeze (int, optional): Dimension to unsqueeze in the output tensors
        cat_dim (int, optional): Dimension to concatenate the x,y coordinates. If None, returns tuple
        homogeneous (bool, optional): If True, adds a third dimension of ones to make homogeneous coordinates
        **arange_kw: Additional keyword arguments passed to np.arange or torch.arange

    Returns:
        numpy.ndarray or torch.Tensor: Coordinate grid where:
            - output[j,i,0] = i + origin[0] (x-coordinate)
            - output[j,i,1] = j + origin[1] (y-coordinate)
            - output[j,i,2] = 1 (if homogeneous=True)
    """
    if device is None:
        # numpy
        arange, meshgrid, stack, ones = np.arange, np.meshgrid, np.stack, np.ones
    else:
        # torch
        def arange(*a, **kw):
            return torch.arange(*a, device=device, **kw)

        meshgrid, stack = torch.meshgrid, torch.stack

        def ones(*a):
            return torch.ones(*a, device=device)

    tw, th = [arange(o, o + s, **arange_kw) for s, o in zip((W, H), origin)]
    grid = meshgrid(tw, th, indexing="xy")
    if homogeneous:
        grid = grid + (ones((H, W)),)
    if unsqueeze is not None:
        grid = (grid[0].unsqueeze(unsqueeze), grid[1].unsqueeze(unsqueeze))
    if cat_dim is not None:
        grid = stack(grid, cat_dim)

    return grid


def geotrf(Trf, pts, ncol=None, norm=False):
    """
    Apply a geometric transformation to a set of 3-D points.

    Args:
        Trf: 3x3 or 4x4 projection matrix (typically a Homography) or batch of matrices
            with shape (B, 3, 3) or (B, 4, 4)
        pts: numpy/torch/tuple of coordinates with shape (..., 2) or (..., 3)
        ncol: int, number of columns of the result (2 or 3)
        norm: float, if not 0, the result is projected on the z=norm plane
            (homogeneous normalization)

    Returns:
        Array or tensor of projected points with the same type as input and shape (..., ncol)
    """
    assert Trf.ndim >= 2
    if isinstance(Trf, np.ndarray):
        pts = np.asarray(pts)
    elif isinstance(Trf, torch.Tensor):
        pts = torch.as_tensor(pts, dtype=Trf.dtype)

    # Adapt shape if necessary
    output_reshape = pts.shape[:-1]
    ncol = ncol or pts.shape[-1]

    # Optimized code
    if (
        isinstance(Trf, torch.Tensor)
        and isinstance(pts, torch.Tensor)
        and Trf.ndim == 3
        and pts.ndim == 4
    ):
        d = pts.shape[3]
        if Trf.shape[-1] == d:
            pts = torch.einsum("bij, bhwj -> bhwi", Trf, pts)
        elif Trf.shape[-1] == d + 1:
            pts = (
                torch.einsum("bij, bhwj -> bhwi", Trf[:, :d, :d], pts)
                + Trf[:, None, None, :d, d]
            )
        else:
            raise ValueError(f"bad shape, not ending with 3 or 4, for {pts.shape=}")
    else:
        if Trf.ndim >= 3:
            n = Trf.ndim - 2
            assert Trf.shape[:n] == pts.shape[:n], "batch size does not match"
            Trf = Trf.reshape(-1, Trf.shape[-2], Trf.shape[-1])

            if pts.ndim > Trf.ndim:
                # Trf == (B,d,d) & pts == (B,H,W,d) --> (B, H*W, d)
                pts = pts.reshape(Trf.shape[0], -1, pts.shape[-1])
            elif pts.ndim == 2:
                # Trf == (B,d,d) & pts == (B,d) --> (B, 1, d)
                pts = pts[:, None, :]

        if pts.shape[-1] + 1 == Trf.shape[-1]:
            Trf = Trf.swapaxes(-1, -2)  # transpose Trf
            pts = pts @ Trf[..., :-1, :] + Trf[..., -1:, :]
        elif pts.shape[-1] == Trf.shape[-1]:
            Trf = Trf.swapaxes(-1, -2)  # transpose Trf
            pts = pts @ Trf
        else:
            pts = Trf @ pts.T
            if pts.ndim >= 2:
                pts = pts.swapaxes(-1, -2)

    if norm:
        pts = pts / pts[..., -1:]  # DONT DO /=, it will lead to a bug
        if norm != 1:
            pts *= norm

    res = pts[..., :ncol].reshape(*output_reshape, ncol)

    return res


def inv(mat):
    """
    Invert a torch or numpy matrix
    """
    if isinstance(mat, torch.Tensor):
        return torch.linalg.inv(mat)
    if isinstance(mat, np.ndarray):
        return np.linalg.inv(mat)
    raise ValueError(f"bad matrix type = {type(mat)}")


def closed_form_pose_inverse(
    pose_matrices, rotation_matrices=None, translation_vectors=None
):
    """
    Compute the inverse of each 4x4 (or 3x4) SE3 pose matrices in a batch.

    If `rotation_matrices` and `translation_vectors` are provided, they must correspond to the rotation and translation
    components of `pose_matrices`. Otherwise, they will be extracted from `pose_matrices`.

    Args:
        pose_matrices: Nx4x4 or Nx3x4 array or tensor of SE3 matrices.
        rotation_matrices (optional): Nx3x3 array or tensor of rotation matrices.
        translation_vectors (optional): Nx3x1 array or tensor of translation vectors.

    Returns:
        Inverted SE3 matrices with the same type and device as input `pose_matrices`.

    Shapes:
        pose_matrices: (N, 4, 4)
        rotation_matrices: (N, 3, 3)
        translation_vectors: (N, 3, 1)
    """
    # Check if pose_matrices is a numpy array or a torch tensor
    is_numpy = isinstance(pose_matrices, np.ndarray)

    # Validate shapes
    if pose_matrices.shape[-2:] != (4, 4) and pose_matrices.shape[-2:] != (3, 4):
        raise ValueError(
            f"pose_matrices must be of shape (N,4,4), got {pose_matrices.shape}."
        )

    # Extract rotation_matrices and translation_vectors if not provided
    if rotation_matrices is None:
        rotation_matrices = pose_matrices[:, :3, :3]
    if translation_vectors is None:
        translation_vectors = pose_matrices[:, :3, 3:]

    # Compute the inverse of input SE3 matrices
    if is_numpy:
        rotation_transposed = np.transpose(rotation_matrices, (0, 2, 1))
        new_translation = -np.matmul(rotation_transposed, translation_vectors)
        inverted_matrix = np.tile(np.eye(4), (len(rotation_matrices), 1, 1))
    else:
        rotation_transposed = rotation_matrices.transpose(1, 2)
        new_translation = -torch.bmm(rotation_transposed, translation_vectors)
        inverted_matrix = torch.eye(4, 4)[None].repeat(len(rotation_matrices), 1, 1)
        inverted_matrix = inverted_matrix.to(rotation_matrices.dtype).to(
            rotation_matrices.device
        )
    inverted_matrix[:, :3, :3] = rotation_transposed
    inverted_matrix[:, :3, 3:] = new_translation

    return inverted_matrix


def relative_pose_transformation(trans_01, trans_02):
    r"""
    Function that computes the relative homogenous transformation from a
    reference transformation :math:`T_1^{0} = \begin{bmatrix} R_1 & t_1 \\
    \mathbf{0} & 1 \end{bmatrix}` to destination :math:`T_2^{0} =
    \begin{bmatrix} R_2 & t_2 \\ \mathbf{0} & 1 \end{bmatrix}`.

    The relative transformation is computed as follows:

    .. math::

        T_1^{2} = (T_0^{1})^{-1} \cdot T_0^{2}

    Arguments:
        trans_01 (torch.Tensor): reference transformation tensor of shape
         :math:`(N, 4, 4)` or :math:`(4, 4)`.
        trans_02 (torch.Tensor): destination transformation tensor of shape
         :math:`(N, 4, 4)` or :math:`(4, 4)`.

    Shape:
        - Output: :math:`(N, 4, 4)` or :math:`(4, 4)`.

    Returns:
        torch.Tensor: the relative transformation between the transformations.

    Example::
        >>> trans_01 = torch.eye(4)  # 4x4
        >>> trans_02 = torch.eye(4)  # 4x4
        >>> trans_12 = relative_transformation(trans_01, trans_02)  # 4x4
    """
    if not torch.is_tensor(trans_01):
        raise TypeError(
            "Input trans_01 type is not a torch.Tensor. Got {}".format(type(trans_01))
        )
    if not torch.is_tensor(trans_02):
        raise TypeError(
            "Input trans_02 type is not a torch.Tensor. Got {}".format(type(trans_02))
        )
    if trans_01.dim() not in (2, 3) and trans_01.shape[-2:] == (4, 4):
        raise ValueError(
            "Input must be a of the shape Nx4x4 or 4x4. Got {}".format(trans_01.shape)
        )
    if trans_02.dim() not in (2, 3) and trans_02.shape[-2:] == (4, 4):
        raise ValueError(
            "Input must be a of the shape Nx4x4 or 4x4. Got {}".format(trans_02.shape)
        )
    if not trans_01.dim() == trans_02.dim():
        raise ValueError(
            "Input number of dims must match. Got {} and {}".format(
                trans_01.dim(), trans_02.dim()
            )
        )

    # Convert to Nx4x4 if inputs are 4x4
    squeeze_batch_dim = False
    if trans_01.dim() == 2:
        trans_01 = trans_01.unsqueeze(0)
        trans_02 = trans_02.unsqueeze(0)
        squeeze_batch_dim = True

    # Compute inverse of trans_01 using closed form
    trans_10 = closed_form_pose_inverse(trans_01)

    # Compose transformations using matrix multiplication
    trans_12 = torch.matmul(trans_10, trans_02)

    # Remove batch dimension if it was added
    if squeeze_batch_dim:
        trans_12 = trans_12.squeeze(0)

    return trans_12


def depthmap_to_pts3d(depth, pseudo_focal, pp=None, **_):
    """
    Args:
        - depthmap (BxHxW array):
        - pseudo_focal: [B,H,W] ; [B,2,H,W] or [B,1,H,W]
    Returns:
        pointmap of absolute coordinates (BxHxWx3 array)
    """

    if len(depth.shape) == 4:
        B, H, W, n = depth.shape
    else:
        B, H, W = depth.shape
        n = None

    if len(pseudo_focal.shape) == 3:  # [B,H,W]
        pseudo_focalx = pseudo_focaly = pseudo_focal
    elif len(pseudo_focal.shape) == 4:  # [B,2,H,W] or [B,1,H,W]
        pseudo_focalx = pseudo_focal[:, 0]
        if pseudo_focal.shape[1] == 2:
            pseudo_focaly = pseudo_focal[:, 1]
        else:
            pseudo_focaly = pseudo_focalx
    else:
        raise NotImplementedError("Error, unknown input focal shape format.")

    assert pseudo_focalx.shape == depth.shape[:3]
    assert pseudo_focaly.shape == depth.shape[:3]
    grid_x, grid_y = xy_grid(W, H, cat_dim=0, device=depth.device)[:, None]

    # set principal point
    if pp is None:
        grid_x = grid_x - (W - 1) / 2
        grid_y = grid_y - (H - 1) / 2
    else:
        grid_x = grid_x.expand(B, -1, -1) - pp[:, 0, None, None]
        grid_y = grid_y.expand(B, -1, -1) - pp[:, 1, None, None]

    if n is None:
        pts3d = torch.empty((B, H, W, 3), device=depth.device)
        pts3d[..., 0] = depth * grid_x / pseudo_focalx
        pts3d[..., 1] = depth * grid_y / pseudo_focaly
        pts3d[..., 2] = depth
    else:
        pts3d = torch.empty((B, H, W, 3, n), device=depth.device)
        pts3d[..., 0, :] = depth * (grid_x / pseudo_focalx)[..., None]
        pts3d[..., 1, :] = depth * (grid_y / pseudo_focaly)[..., None]
        pts3d[..., 2, :] = depth
    return pts3d


def depthmap_to_camera_coordinates(depthmap, camera_intrinsics, pseudo_focal=None):
    """
    Args:
        - depthmap (HxW array):
        - camera_intrinsics: a 3x3 matrix
    Returns:
        pointmap of absolute coordinates (HxWx3 array), and a mask specifying valid pixels.
    """
    camera_intrinsics = np.float32(camera_intrinsics)
    H, W = depthmap.shape

    # Compute 3D ray associated with each pixel
    # Strong assumption: there are no skew terms
    assert camera_intrinsics[0, 1] == 0.0
    assert camera_intrinsics[1, 0] == 0.0
    if pseudo_focal is None:
        fu = camera_intrinsics[0, 0]
        fv = camera_intrinsics[1, 1]
    else:
        assert pseudo_focal.shape == (H, W)
        fu = fv = pseudo_focal
    cu = camera_intrinsics[0, 2]
    cv = camera_intrinsics[1, 2]

    u, v = np.meshgrid(np.arange(W), np.arange(H))
    z_cam = depthmap
    x_cam = (u - cu) * z_cam / fu
    y_cam = (v - cv) * z_cam / fv
    X_cam = np.stack((x_cam, y_cam, z_cam), axis=-1).astype(np.float32)

    # Mask for valid coordinates
    valid_mask = depthmap > 0.0

    return X_cam, valid_mask


def depthmap_to_absolute_camera_coordinates(
    depthmap, camera_intrinsics, camera_pose, **kw
):
    """
    Args:
        - depthmap (HxW array):
        - camera_intrinsics: a 3x3 matrix
        - camera_pose: a 4x3 or 4x4 cam2world matrix
    Returns:
        pointmap of absolute coordinates (HxWx3 array), and a mask specifying valid pixels.
    """
    X_cam, valid_mask = depthmap_to_camera_coordinates(depthmap, camera_intrinsics)

    X_world = X_cam  # default
    if camera_pose is not None:
        # R_cam2world = np.float32(camera_params["R_cam2world"])
        # t_cam2world = np.float32(camera_params["t_cam2world"]).squeeze()
        R_cam2world = camera_pose[:3, :3]
        t_cam2world = camera_pose[:3, 3]

        # Express in absolute coordinates (invalid depth values)
        X_world = (
            np.einsum("ik, vuk -> vui", R_cam2world, X_cam) + t_cam2world[None, None, :]
        )

    return X_world, valid_mask


def get_absolute_pointmaps_and_rays_info(
    depthmap, camera_intrinsics, camera_pose, **kw
):
    """
    Args:
        - depthmap (HxW array):
        - camera_intrinsics: a 3x3 matrix
        - camera_pose: a 4x3 or 4x4 cam2world matrix
    Returns:
        pointmap of absolute coordinates (HxWx3 array),
        a mask specifying valid pixels,
        ray origins of absolute coordinates (HxWx3 array),
        ray directions of absolute coordinates (HxWx3 array),
        depth along ray (HxWx1 array),
        ray directions of camera/local coordinates (HxWx3 array),
        pointmap of camera/local coordinates (HxWx3 array).
    """
    camera_intrinsics = np.float32(camera_intrinsics)
    H, W = depthmap.shape

    # Compute 3D ray associated with each pixel
    # Strong assumption: pinhole & there are no skew terms
    assert camera_intrinsics[0, 1] == 0.0
    assert camera_intrinsics[1, 0] == 0.0
    fu = camera_intrinsics[0, 0]
    fv = camera_intrinsics[1, 1]
    cu = camera_intrinsics[0, 2]
    cv = camera_intrinsics[1, 2]

    # Get the rays on the unit plane
    u, v = np.meshgrid(np.arange(W), np.arange(H))
    x_cam = (u - cu) / fu
    y_cam = (v - cv) / fv
    z_cam = np.ones_like(x_cam)
    ray_dirs_cam_on_unit_plane = np.stack((x_cam, y_cam, z_cam), axis=-1).astype(
        np.float32
    )

    # Compute the 3d points in the local camera coordinate system
    pts_cam = depthmap[..., None] * ray_dirs_cam_on_unit_plane

    # Get the depth along the ray and compute the ray directions on the unit sphere
    depth_along_ray = np.linalg.norm(pts_cam, axis=-1, keepdims=True)
    ray_directions_cam = ray_dirs_cam_on_unit_plane / np.linalg.norm(
        ray_dirs_cam_on_unit_plane, axis=-1, keepdims=True
    )

    # Mask for valid coordinates
    valid_mask = depthmap > 0.0

    # Get the ray origins in absolute coordinates and the ray directions in absolute coordinates
    ray_origins_world = np.zeros_like(ray_directions_cam)
    ray_directions_world = ray_directions_cam
    pts_world = pts_cam
    if camera_pose is not None:
        R_cam2world = camera_pose[:3, :3]
        t_cam2world = camera_pose[:3, 3]

        # Express in absolute coordinates
        ray_origins_world = ray_origins_world + t_cam2world[None, None, :]
        ray_directions_world = np.einsum(
            "ik, vuk -> vui", R_cam2world, ray_directions_cam
        )
        pts_world = ray_origins_world + ray_directions_world * depth_along_ray

    return (
        pts_world,
        valid_mask,
        ray_origins_world,
        ray_directions_world,
        depth_along_ray,
        ray_directions_cam,
        pts_cam,
    )


def adjust_camera_params_for_rotation(camera_params, original_size, k):
    """
    Adjust camera parameters for rotation.

    Args:
        camera_params: Camera parameters [fx, fy, cx, cy, ...]
        original_size: Original image size as (width, height)
        k: Number of 90-degree rotations counter-clockwise (k=3 means 90 degrees clockwise)

    Returns:
        Adjusted camera parameters
    """
    fx, fy, cx, cy = camera_params[:4]
    width, height = original_size

    if k % 4 == 1:  # 90 degrees counter-clockwise
        new_fx, new_fy = fy, fx
        new_cx, new_cy = height - cy, cx
    elif k % 4 == 2:  # 180 degrees
        new_fx, new_fy = fx, fy
        new_cx, new_cy = width - cx, height - cy
    elif k % 4 == 3:  # 90 degrees clockwise (270 counter-clockwise)
        new_fx, new_fy = fy, fx
        new_cx, new_cy = cy, width - cx
    else:  # No rotation
        return camera_params

    adjusted_params = [new_fx, new_fy, new_cx, new_cy]
    if len(camera_params) > 4:
        adjusted_params.extend(camera_params[4:])

    return adjusted_params


def adjust_pose_for_rotation(pose, k):
    """
    Adjust camera pose for rotation.

    Args:
        pose: 4x4 camera pose matrix (camera-to-world, OpenCV convention - X right, Y down, Z forward)
        k: Number of 90-degree rotations counter-clockwise (k=3 means 90 degrees clockwise)

    Returns:
        Adjusted 4x4 camera pose matrix
    """
    # Create rotation matrices for different rotations
    if k % 4 == 1:  # 90 degrees counter-clockwise
        rot_transform = np.array([[0, -1, 0], [1, 0, 0], [0, 0, 1]])
    elif k % 4 == 2:  # 180 degrees
        rot_transform = np.array([[-1, 0, 0], [0, -1, 0], [0, 0, 1]])
    elif k % 4 == 3:  # 90 degrees clockwise (270 counter-clockwise)
        rot_transform = np.array([[0, 1, 0], [-1, 0, 0], [0, 0, 1]])
    else:  # No rotation
        return pose

    # Apply the transformation to the pose
    adjusted_pose = pose
    adjusted_pose[:3, :3] = adjusted_pose[:3, :3] @ rot_transform.T

    return adjusted_pose


def crop_to_aspect_ratio(image, depth, camera_params, target_ratio=1.5):
    """
    Crop image and depth to the largest possible target aspect ratio while
    keeping the left side if aspect ratio is wider and the bottom of image if the aspect ratio is taller.

    Args:
        image: PIL image
        depth: Depth map as numpy array
        camera_params: Camera parameters [fx, fy, cx, cy, ...]
        target_ratio: Target width/height ratio

    Returns:
        Cropped image, cropped depth, adjusted camera parameters
    """
    width, height = image.size
    fx, fy, cx, cy = camera_params[:4]
    current_ratio = width / height

    if abs(current_ratio - target_ratio) < 1e-6:
        # Already at target ratio
        return image, depth, camera_params

    if current_ratio > target_ratio:
        # Image is wider than target ratio, crop width
        new_width = int(height * target_ratio)
        left = 0
        right = new_width

        # Crop image
        cropped_image = image.crop((left, 0, right, height))

        # Crop depth
        if len(depth.shape) == 3:
            cropped_depth = depth[:, left:right, :]
        else:
            cropped_depth = depth[:, left:right]

        # Adjust camera parameters
        new_cx = cx - left
        adjusted_params = [fx, fy, new_cx, cy] + list(camera_params[4:])

    else:
        # Image is taller than target ratio, crop height
        new_height = int(width / target_ratio)
        top = max(0, height - new_height)
        bottom = height

        # Crop image
        cropped_image = image.crop((0, top, width, bottom))

        # Crop depth
        if len(depth.shape) == 3:
            cropped_depth = depth[top:bottom, :, :]
        else:
            cropped_depth = depth[top:bottom, :]

        # Adjust camera parameters
        new_cy = cy - top
        adjusted_params = [fx, fy, cx, new_cy] + list(camera_params[4:])

    return cropped_image, cropped_depth, adjusted_params


def colmap_to_opencv_intrinsics(K):
    """
    Modify camera intrinsics to follow a different convention.
    Coordinates of the center of the top-left pixels are by default:
    - (0.5, 0.5) in Colmap
    - (0,0) in OpenCV
    """
    K = K.copy()
    K[0, 2] -= 0.5
    K[1, 2] -= 0.5

    return K


def opencv_to_colmap_intrinsics(K):
    """
    Modify camera intrinsics to follow a different convention.
    Coordinates of the center of the top-left pixels are by default:
    - (0.5, 0.5) in Colmap
    - (0,0) in OpenCV
    """
    K = K.copy()
    K[0, 2] += 0.5
    K[1, 2] += 0.5

    return K


def normalize_depth_using_non_zero_pixels(depth, return_norm_factor=False):
    """
    Normalize the depth by the average depth of non-zero depth pixels.

    Args:
        depth (torch.Tensor): Depth tensor of size [B, H, W, 1].
    Returns:
        normalized_depth (torch.Tensor): Normalized depth tensor.
        norm_factor (torch.Tensor): Norm factor tensor of size B.
    """
    assert depth.ndim == 4 and depth.shape[3] == 1
    # Calculate the sum and count of non-zero depth pixels for each batch
    valid_depth_mask = depth > 0
    valid_sum = torch.sum(depth * valid_depth_mask, dim=(1, 2, 3))
    valid_count = torch.sum(valid_depth_mask, dim=(1, 2, 3))

    # Calculate the norm factor
    norm_factor = valid_sum / (valid_count + 1e-8)
    while norm_factor.ndim < depth.ndim:
        norm_factor.unsqueeze_(-1)

    # Normalize the depth by the norm factor
    norm_factor = norm_factor.clip(min=1e-8)
    normalized_depth = depth / norm_factor

    # Create the output tuple
    output = (
        (normalized_depth, norm_factor.squeeze(-1).squeeze(-1).squeeze(-1))
        if return_norm_factor
        else normalized_depth
    )

    return output


def normalize_pose_translations(pose_translations, return_norm_factor=False):
    """
    Normalize the pose translations by the average norm of the non-zero pose translations.

    Args:
        pose_translations (torch.Tensor): Pose translations tensor of size [B, V, 3]. B is the batch size, V is the number of views.
    Returns:
        normalized_pose_translations (torch.Tensor): Normalized pose translations tensor of size [B, V, 3].
        norm_factor (torch.Tensor): Norm factor tensor of size B.
    """
    assert pose_translations.ndim == 3 and pose_translations.shape[2] == 3
    # Compute distance of all pose translations to origin
    pose_translations_dis = pose_translations.norm(dim=-1)  # [B, V]
    non_zero_pose_translations_dis = pose_translations_dis > 0  # [B, V]

    # Calculate the average norm of the translations across all views (considering only views with non-zero translations)
    sum_of_all_views_pose_translations = pose_translations_dis.sum(dim=1)  # [B]
    count_of_all_views_with_non_zero_pose_translations = (
        non_zero_pose_translations_dis.sum(dim=1)
    )  # [B]
    norm_factor = sum_of_all_views_pose_translations / (
        count_of_all_views_with_non_zero_pose_translations + 1e-8
    )  # [B]

    # Normalize the pose translations by the norm factor
    norm_factor = norm_factor.clip(min=1e-8)
    normalized_pose_translations = pose_translations / norm_factor.unsqueeze(
        -1
    ).unsqueeze(-1)

    # Create the output tuple
    output = (
        (normalized_pose_translations, norm_factor)
        if return_norm_factor
        else normalized_pose_translations
    )

    return output


def normalize_multiple_pointclouds(
    pts_list, valid_masks=None, norm_mode="avg_dis", ret_factor=False
):
    """
    Normalize multiple point clouds using a joint normalization strategy.

    Args:
        pts_list: List of point clouds, each with shape (..., H, W, 3) or (B, H, W, 3)
        valid_masks: Optional list of masks indicating valid points in each point cloud
        norm_mode: String in format "{norm}_{dis}" where:
            - norm: Normalization strategy (currently only "avg" is supported)
            - dis: Distance transformation ("dis" for raw distance, "log1p" for log(1+distance),
                  "warp-log1p" to warp points using log distance)
        ret_factor: If True, return the normalization factor as the last element in the result list

    Returns:
        List of normalized point clouds with the same shapes as inputs.
        If ret_factor is True, the last element is the normalization factor.
    """
    assert all(pts.ndim >= 3 and pts.shape[-1] == 3 for pts in pts_list)
    if valid_masks is not None:
        assert len(pts_list) == len(valid_masks)

    norm_mode, dis_mode = norm_mode.split("_")

    # Gather all points together (joint normalization)
    nan_pts_list = [
        invalid_to_zeros(pts, valid_masks[i], ndim=3)
        if valid_masks
        else invalid_to_zeros(pts, None, ndim=3)
        for i, pts in enumerate(pts_list)
    ]
    all_pts = torch.cat([nan_pts for nan_pts, _ in nan_pts_list], dim=1)
    nnz_list = [nnz for _, nnz in nan_pts_list]

    # Compute distance to origin
    all_dis = all_pts.norm(dim=-1)
    if dis_mode == "dis":
        pass  # do nothing
    elif dis_mode == "log1p":
        all_dis = torch.log1p(all_dis)
    elif dis_mode == "warp-log1p":
        # Warp input points before normalizing them
        log_dis = torch.log1p(all_dis)
        warp_factor = log_dis / all_dis.clip(min=1e-8)
        for i, pts in enumerate(pts_list):
            H, W = pts.shape[1:-1]
            pts_list[i] = pts * warp_factor[:, i * (H * W) : (i + 1) * (H * W)].view(
                -1, H, W, 1
            )
        all_dis = log_dis
    else:
        raise ValueError(f"bad {dis_mode=}")

    # Compute normalization factor
    norm_factor = all_dis.sum(dim=1) / (sum(nnz_list) + 1e-8)
    norm_factor = norm_factor.clip(min=1e-8)
    while norm_factor.ndim < pts_list[0].ndim:
        norm_factor.unsqueeze_(-1)

    # Normalize points
    res = [pts / norm_factor for pts in pts_list]
    if ret_factor:
        res.append(norm_factor)

    return res


def apply_log_to_norm(input_data):
    """
    Normalize the input data and apply a logarithmic transformation based on the normalization factor.

    Args:
        input_data (torch.Tensor): The input tensor to be normalized and transformed.

    Returns:
        torch.Tensor: The transformed tensor after normalization and logarithmic scaling.
    """
    org_d = input_data.norm(dim=-1, keepdim=True)
    input_data = input_data / org_d.clip(min=1e-8)
    input_data = input_data * torch.log1p(org_d)
    return input_data


def angle_diff_vec3(v1, v2, eps=1e-12):
    """
    Compute angle difference between 3D vectors.

    Args:
        v1: torch.Tensor of shape (..., 3)
        v2: torch.Tensor of shape (..., 3)
        eps: Small epsilon value for numerical stability

    Returns:
        torch.Tensor: Angle differences in radians
    """
    cross_norm = torch.cross(v1, v2, dim=-1).norm(dim=-1) + eps
    dot_prod = (v1 * v2).sum(dim=-1)
    return torch.atan2(cross_norm, dot_prod)


def angle_diff_vec3_numpy(v1: np.ndarray, v2: np.ndarray, eps: float = 1e-12):
    """
    Compute angle difference between 3D vectors using NumPy.

    Args:
        v1 (np.ndarray): First vector of shape (..., 3)
        v2 (np.ndarray): Second vector of shape (..., 3)
        eps (float, optional): Small epsilon value for numerical stability. Defaults to 1e-12.

    Returns:
        np.ndarray: Angle differences in radians
    """
    return np.arctan2(
        np.linalg.norm(np.cross(v1, v2, axis=-1), axis=-1) + eps, (v1 * v2).sum(axis=-1)
    )


@no_warnings(category=RuntimeWarning)
def points_to_normals(
    point: np.ndarray, mask: np.ndarray = None, edge_threshold: float = None
) -> np.ndarray:
    """
    Calculate normal map from point map. Value range is [-1, 1].

    Args:
        point (np.ndarray): shape (height, width, 3), point map
        mask (optional, np.ndarray): shape (height, width), dtype=bool. Mask of valid depth pixels. Defaults to None.
        edge_threshold (optional, float): threshold for the angle (in degrees) between the normal and the view direction. Defaults to None.

    Returns:
        normal (np.ndarray): shape (height, width, 3), normal map.
    """
    height, width = point.shape[-3:-1]
    has_mask = mask is not None

    if mask is None:
        mask = np.ones_like(point[..., 0], dtype=bool)
    mask_pad = np.zeros((height + 2, width + 2), dtype=bool)
    mask_pad[1:-1, 1:-1] = mask
    mask = mask_pad

    pts = np.zeros((height + 2, width + 2, 3), dtype=point.dtype)
    pts[1:-1, 1:-1, :] = point
    up = pts[:-2, 1:-1, :] - pts[1:-1, 1:-1, :]
    left = pts[1:-1, :-2, :] - pts[1:-1, 1:-1, :]
    down = pts[2:, 1:-1, :] - pts[1:-1, 1:-1, :]
    right = pts[1:-1, 2:, :] - pts[1:-1, 1:-1, :]
    normal = np.stack(
        [
            np.cross(up, left, axis=-1),
            np.cross(left, down, axis=-1),
            np.cross(down, right, axis=-1),
            np.cross(right, up, axis=-1),
        ]
    )
    normal = normal / (np.linalg.norm(normal, axis=-1, keepdims=True) + 1e-12)

    valid = (
        np.stack(
            [
                mask[:-2, 1:-1] & mask[1:-1, :-2],
                mask[1:-1, :-2] & mask[2:, 1:-1],
                mask[2:, 1:-1] & mask[1:-1, 2:],
                mask[1:-1, 2:] & mask[:-2, 1:-1],
            ]
        )
        & mask[None, 1:-1, 1:-1]
    )
    if edge_threshold is not None:
        view_angle = angle_diff_vec3_numpy(pts[None, 1:-1, 1:-1, :], normal)
        view_angle = np.minimum(view_angle, np.pi - view_angle)
        valid = valid & (view_angle < np.deg2rad(edge_threshold))

    normal = (normal * valid[..., None]).sum(axis=0)
    normal = normal / (np.linalg.norm(normal, axis=-1, keepdims=True) + 1e-12)

    if has_mask:
        normal_mask = valid.any(axis=0)
        normal = np.where(normal_mask[..., None], normal, 0)
        return normal, normal_mask
    else:
        return normal


def sliding_window_1d(x: np.ndarray, window_size: int, stride: int, axis: int = -1):
    """
    Create a sliding window view of the input array along a specified axis.

    This function creates a memory-efficient view of the input array with sliding windows
    of the specified size and stride. The window dimension is appended to the end of the
    output array's shape. This is useful for operations like convolution, pooling, or
    any analysis that requires examining local neighborhoods in the data.

    Args:
        x (np.ndarray): Input array with shape (..., axis_size, ...)
        window_size (int): Size of the sliding window
        stride (int): Stride of the sliding window (step size between consecutive windows)
        axis (int, optional): Axis to perform sliding window over. Defaults to -1 (last axis)

    Returns:
        np.ndarray: View of the input array with shape (..., n_windows, ..., window_size),
                   where n_windows = (axis_size - window_size + 1) // stride

    Raises:
        AssertionError: If window_size is larger than the size of the specified axis

    Example:
        >>> x = np.array([1, 2, 3, 4, 5, 6])
        >>> sliding_window_1d(x, window_size=3, stride=2)
        array([[1, 2, 3],
               [3, 4, 5]])
    """
    assert x.shape[axis] >= window_size, (
        f"kernel_size ({window_size}) is larger than axis_size ({x.shape[axis]})"
    )
    axis = axis % x.ndim
    shape = (
        *x.shape[:axis],
        (x.shape[axis] - window_size + 1) // stride,
        *x.shape[axis + 1 :],
        window_size,
    )
    strides = (
        *x.strides[:axis],
        stride * x.strides[axis],
        *x.strides[axis + 1 :],
        x.strides[axis],
    )
    x_sliding = np.lib.stride_tricks.as_strided(x, shape=shape, strides=strides)
    return x_sliding


def sliding_window_nd(
    x: np.ndarray,
    window_size: Tuple[int, ...],
    stride: Tuple[int, ...],
    axis: Tuple[int, ...],
) -> np.ndarray:
    """
    Create sliding windows along multiple dimensions of the input array.

    This function applies sliding_window_1d sequentially along multiple axes to create
    N-dimensional sliding windows. This is useful for operations that need to examine
    local neighborhoods in multiple dimensions simultaneously.

    Args:
        x (np.ndarray): Input array
        window_size (Tuple[int, ...]): Size of the sliding window for each axis
        stride (Tuple[int, ...]): Stride of the sliding window for each axis
        axis (Tuple[int, ...]): Axes to perform sliding window over

    Returns:
        np.ndarray: Array with sliding windows along the specified dimensions.
                   The window dimensions are appended to the end of the shape.

    Note:
        The length of window_size, stride, and axis tuples must be equal.

    Example:
        >>> x = np.random.rand(10, 10)
        >>> windows = sliding_window_nd(x, window_size=(3, 3), stride=(2, 2), axis=(-2, -1))
        >>> # Creates 3x3 sliding windows with stride 2 in both dimensions
    """
    axis = [axis[i] % x.ndim for i in range(len(axis))]
    for i in range(len(axis)):
        x = sliding_window_1d(x, window_size[i], stride[i], axis[i])
    return x


def sliding_window_2d(
    x: np.ndarray,
    window_size: Union[int, Tuple[int, int]],
    stride: Union[int, Tuple[int, int]],
    axis: Tuple[int, int] = (-2, -1),
) -> np.ndarray:
    """
    Create 2D sliding windows over the input array.

    Convenience function for creating 2D sliding windows, commonly used for image
    processing operations like convolution, pooling, or patch extraction.

    Args:
        x (np.ndarray): Input array
        window_size (Union[int, Tuple[int, int]]): Size of the 2D sliding window.
                                                  If int, same size is used for both dimensions.
        stride (Union[int, Tuple[int, int]]): Stride of the 2D sliding window.
                                             If int, same stride is used for both dimensions.
        axis (Tuple[int, int], optional): Two axes to perform sliding window over.
                                         Defaults to (-2, -1) (last two dimensions).

    Returns:
        np.ndarray: Array with 2D sliding windows. The window dimensions (height, width)
                   are appended to the end of the shape.

    Example:
        >>> image = np.random.rand(100, 100)
        >>> patches = sliding_window_2d(image, window_size=8, stride=4)
        >>> # Creates 8x8 patches with stride 4 from the image
    """
    if isinstance(window_size, int):
        window_size = (window_size, window_size)
    if isinstance(stride, int):
        stride = (stride, stride)
    return sliding_window_nd(x, window_size, stride, axis)


def max_pool_1d(
    x: np.ndarray, kernel_size: int, stride: int, padding: int = 0, axis: int = -1
):
    """
    Perform 1D max pooling on the input array.

    Max pooling reduces the dimensionality of the input by taking the maximum value
    within each sliding window. This is commonly used in neural networks and signal
    processing for downsampling and feature extraction.

    Args:
        x (np.ndarray): Input array
        kernel_size (int): Size of the pooling kernel
        stride (int): Stride of the pooling operation
        padding (int, optional): Amount of padding to add on both sides. Defaults to 0.
        axis (int, optional): Axis to perform max pooling over. Defaults to -1.

    Returns:
        np.ndarray: Max pooled array with reduced size along the specified axis

    Note:
        - For floating point arrays, padding is done with np.nan values
        - For integer arrays, padding is done with the minimum value of the dtype
        - np.nanmax is used to handle NaN values in the computation

    Example:
        >>> x = np.array([1, 3, 2, 4, 5, 1, 2])
        >>> max_pool_1d(x, kernel_size=3, stride=2)
        array([3, 5, 2])
    """
    axis = axis % x.ndim
    if padding > 0:
        fill_value = np.nan if x.dtype.kind == "f" else np.iinfo(x.dtype).min
        padding_arr = np.full(
            (*x.shape[:axis], padding, *x.shape[axis + 1 :]),
            fill_value=fill_value,
            dtype=x.dtype,
        )
        x = np.concatenate([padding_arr, x, padding_arr], axis=axis)
    a_sliding = sliding_window_1d(x, kernel_size, stride, axis)
    max_pool = np.nanmax(a_sliding, axis=-1)
    return max_pool


def max_pool_nd(
    x: np.ndarray,
    kernel_size: Tuple[int, ...],
    stride: Tuple[int, ...],
    padding: Tuple[int, ...],
    axis: Tuple[int, ...],
) -> np.ndarray:
    """
    Perform N-dimensional max pooling on the input array.

    This function applies max_pool_1d sequentially along multiple axes to perform
    multi-dimensional max pooling. This is useful for downsampling multi-dimensional
    data while preserving the most important features.

    Args:
        x (np.ndarray): Input array
        kernel_size (Tuple[int, ...]): Size of the pooling kernel for each axis
        stride (Tuple[int, ...]): Stride of the pooling operation for each axis
        padding (Tuple[int, ...]): Amount of padding for each axis
        axis (Tuple[int, ...]): Axes to perform max pooling over

    Returns:
        np.ndarray: Max pooled array with reduced size along the specified axes

    Note:
        The length of kernel_size, stride, padding, and axis tuples must be equal.
        Max pooling is applied sequentially along each axis in the order specified.

    Example:
        >>> x = np.random.rand(10, 10, 10)
        >>> pooled = max_pool_nd(x, kernel_size=(2, 2, 2), stride=(2, 2, 2),
        ...                      padding=(0, 0, 0), axis=(-3, -2, -1))
        >>> # Reduces each dimension by half with 2x2x2 max pooling
    """
    for i in range(len(axis)):
        x = max_pool_1d(x, kernel_size[i], stride[i], padding[i], axis[i])
    return x


def max_pool_2d(
    x: np.ndarray,
    kernel_size: Union[int, Tuple[int, int]],
    stride: Union[int, Tuple[int, int]],
    padding: Union[int, Tuple[int, int]],
    axis: Tuple[int, int] = (-2, -1),
):
    """
    Perform 2D max pooling on the input array.

    Convenience function for 2D max pooling, commonly used in computer vision
    and image processing for downsampling images while preserving important features.

    Args:
        x (np.ndarray): Input array
        kernel_size (Union[int, Tuple[int, int]]): Size of the 2D pooling kernel.
                                                  If int, same size is used for both dimensions.
        stride (Union[int, Tuple[int, int]]): Stride of the 2D pooling operation.
                                             If int, same stride is used for both dimensions.
        padding (Union[int, Tuple[int, int]]): Amount of padding for both dimensions.
                                              If int, same padding is used for both dimensions.
        axis (Tuple[int, int], optional): Two axes to perform max pooling over.
                                         Defaults to (-2, -1) (last two dimensions).

    Returns:
        np.ndarray: 2D max pooled array with reduced size along the specified axes

    Example:
        >>> image = np.random.rand(64, 64)
        >>> pooled = max_pool_2d(image, kernel_size=2, stride=2, padding=0)
        >>> # Reduces image size from 64x64 to 32x32 with 2x2 max pooling
    """
    if isinstance(kernel_size, Number):
        kernel_size = (kernel_size, kernel_size)
    if isinstance(stride, Number):
        stride = (stride, stride)
    if isinstance(padding, Number):
        padding = (padding, padding)
    axis = tuple(axis)
    return max_pool_nd(x, kernel_size, stride, padding, axis)


@no_warnings(category=RuntimeWarning)
def depth_edge(
    depth: np.ndarray,
    atol: float = None,
    rtol: float = None,
    kernel_size: int = 3,
    mask: np.ndarray = None,
) -> np.ndarray:
    """
    Compute the edge mask from depth map. The edge is defined as the pixels whose neighbors have large difference in depth.

    Args:
        depth (np.ndarray): shape (..., height, width), linear depth map
        atol (float): absolute tolerance
        rtol (float): relative tolerance

    Returns:
        edge (np.ndarray): shape (..., height, width) of dtype torch.bool
    """
    if mask is None:
        diff = max_pool_2d(
            depth, kernel_size, stride=1, padding=kernel_size // 2
        ) + max_pool_2d(-depth, kernel_size, stride=1, padding=kernel_size // 2)
    else:
        diff = max_pool_2d(
            np.where(mask, depth, -np.inf),
            kernel_size,
            stride=1,
            padding=kernel_size // 2,
        ) + max_pool_2d(
            np.where(mask, -depth, -np.inf),
            kernel_size,
            stride=1,
            padding=kernel_size // 2,
        )

    edge = np.zeros_like(depth, dtype=bool)
    if atol is not None:
        edge |= diff > atol

    if rtol is not None:
        edge |= diff / depth > rtol
    return edge


def depth_aliasing(
    depth: np.ndarray,
    atol: float = None,
    rtol: float = None,
    kernel_size: int = 3,
    mask: np.ndarray = None,
) -> np.ndarray:
    """
    Compute the map that indicates the aliasing of x depth map. The aliasing is defined as the pixels which neither close to the maximum nor the minimum of its neighbors.
    Args:
        depth (np.ndarray): shape (..., height, width), linear depth map
        atol (float): absolute tolerance
        rtol (float): relative tolerance

    Returns:
        edge (np.ndarray): shape (..., height, width) of dtype torch.bool
    """
    if mask is None:
        diff_max = (
            max_pool_2d(depth, kernel_size, stride=1, padding=kernel_size // 2) - depth
        )
        diff_min = (
            max_pool_2d(-depth, kernel_size, stride=1, padding=kernel_size // 2) + depth
        )
    else:
        diff_max = (
            max_pool_2d(
                np.where(mask, depth, -np.inf),
                kernel_size,
                stride=1,
                padding=kernel_size // 2,
            )
            - depth
        )
        diff_min = (
            max_pool_2d(
                np.where(mask, -depth, -np.inf),
                kernel_size,
                stride=1,
                padding=kernel_size // 2,
            )
            + depth
        )
    diff = np.minimum(diff_max, diff_min)

    edge = np.zeros_like(depth, dtype=bool)
    if atol is not None:
        edge |= diff > atol
    if rtol is not None:
        edge |= diff / depth > rtol
    return edge


@no_warnings(category=RuntimeWarning)
def normals_edge(
    normals: np.ndarray, tol: float, kernel_size: int = 3, mask: np.ndarray = None
) -> np.ndarray:
    """
    Compute the edge mask from normal map.

    Args:
        normal (np.ndarray): shape (..., height, width, 3), normal map
        tol (float): tolerance in degrees

    Returns:
        edge (np.ndarray): shape (..., height, width) of dtype torch.bool
    """
    assert normals.ndim >= 3 and normals.shape[-1] == 3, (
        "normal should be of shape (..., height, width, 3)"
    )
    normals = normals / (np.linalg.norm(normals, axis=-1, keepdims=True) + 1e-12)

    padding = kernel_size // 2
    normals_window = sliding_window_2d(
        np.pad(
            normals,
            (
                *([(0, 0)] * (normals.ndim - 3)),
                (padding, padding),
                (padding, padding),
                (0, 0),
            ),
            mode="edge",
        ),
        window_size=kernel_size,
        stride=1,
        axis=(-3, -2),
    )
    if mask is None:
        angle_diff = np.arccos(
            (normals[..., None, None] * normals_window).sum(axis=-3)
        ).max(axis=(-2, -1))
    else:
        mask_window = sliding_window_2d(
            np.pad(
                mask,
                (*([(0, 0)] * (mask.ndim - 3)), (padding, padding), (padding, padding)),
                mode="edge",
            ),
            window_size=kernel_size,
            stride=1,
            axis=(-3, -2),
        )
        angle_diff = np.where(
            mask_window,
            np.arccos((normals[..., None, None] * normals_window).sum(axis=-3)),
            0,
        ).max(axis=(-2, -1))

    angle_diff = max_pool_2d(
        angle_diff, kernel_size, stride=1, padding=kernel_size // 2
    )
    edge = angle_diff > np.deg2rad(tol)
    return edge