| #SBATCH --job-name=slurm-test # create a short name for your job | |
| #SBATCH --nodes=1 # node count | |
| #SBATCH --ntasks=1 # total number of tasks across all nodes | |
| #SBATCH --cpus-per-task=30 # cpu-cores per task (>1 if multi-threaded tasks) | |
| #SBATCH --mem-per-cpu=3G # memory per cpu-core (4G is default) | |
| #SBATCH --gres=gpu:1 # number of gpus per node | |
| #SBATCH --mail-type=ALL # send email when job begins, ends or failed etc. | |
| #SBATCH --requeue | |
| #SBATCH --qos=preemptive | |
| DATA_DIR=./data/cmrc2018 #数据集路径 | |
| PRETRAINED_MODEL_PATH=IDEA-CCNL/Erlangshen-Ubert-110M-Chinese | |
| CHECKPOINT_PATH=./checkpoints | |
| LOAD_CHECKPOINT_PATH=./checkpoints/last.ckpt | |
| OUTPUT_PATH=./predict/cmrc2018_predict.json | |
| DEFAULT_ROOT_DIR=./log | |
| DATA_ARGS="\ | |
| --data_dir $DATA_DIR \ | |
| --train_data train.json \ | |
| --valid_data dev.json \ | |
| --test_data dev.json \ | |
| --batchsize 32 \ | |
| --max_length 314 \ | |
| " | |
| MODEL_ARGS="\ | |
| --learning_rate 0.00002 \ | |
| --weight_decay 0.1 \ | |
| --warmup 0.01 \ | |
| --num_labels 1 \ | |
| " | |
| MODEL_CHECKPOINT_ARGS="\ | |
| --monitor val_span_acc \ | |
| --save_top_k 5 \ | |
| --mode max \ | |
| --every_n_train_steps 100 \ | |
| --save_weights_only true \ | |
| --checkpoint_path $CHECKPOINT_PATH \ | |
| --filename model-{epoch:02d}-{val_span_acc:.4f} \ | |
| " | |
| #--load_checkpoints_path $LOAD_CHECKPOINT_PATH \ | |
| TRAINER_ARGS="\ | |
| --max_epochs 11 \ | |
| --gpus 1 \ | |
| --check_val_every_n_epoch 1 \ | |
| --gradient_clip_val 0.25 \ | |
| --val_check_interval 0.05 \ | |
| --limit_val_batches 100 \ | |
| --default_root_dir $DEFAULT_ROOT_DIR \ | |
| " | |
| options=" \ | |
| --pretrained_model_path $PRETRAINED_MODEL_PATH \ | |
| --output_path $OUTPUT_PATH \ | |
| --threshold 0.001 \ | |
| --train \ | |
| $DATA_ARGS \ | |
| $MODEL_ARGS \ | |
| $MODEL_CHECKPOINT_ARGS \ | |
| $TRAINER_ARGS \ | |
| " | |
| SCRIPT_PATH=./solution/clue_ubert.py | |
| python3 $SCRIPT_PATH $options | |