Spaces:
Sleeping
Sleeping
| import torch, PIL | |
| import gradio as gr | |
| title = "OctoBERT" | |
| description = """Interactive Demo for OctoBERT. This base model is trained only on Flickr-30k.""" | |
| examples =[ | |
| ['swing.jpg','The woman stands outdoors, next to a child in a <mask>.'], | |
| ['tennis.jpg', 'A woman in blue shorts and white shirt holds a tennis racket on a blue <mask> court.'], | |
| ['birthday.jpg', 'The smiling <mask> is celebrating her <mask> party with friends, surrounded by balloons and a <mask> with candles.'], | |
| ['skate.jpg', 'A person in a rainbow colored snowsuit is snowboarding down a <mask> slope.'], | |
| ['street.jpg', 'A man with <mask> plays with a little girl while walking down the street, while an Asian woman walks ahead of them.'], | |
| ['dog.jpg', 'A black dog stands on a <mask>, green fields behind him.'], | |
| ] | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model, img_transform, tokenizer, post_processor, plot_results = torch.hub.load('Jiayi-Pan/RefCloze_Pub', 'flickr_base_model', force_reload=True) | |
| # model, img_transform, tokenizer, post_processor, plot_results = torch.hub.load('.', 'flickr_base_model', source='local') | |
| model = model.to(device) | |
| def plot_inference(img, caption): | |
| imgs_tensor = img_transform(img).to(device).unsqueeze(0) | |
| tokens_tensor = tokenizer(caption, return_tensors="pt").to(device) | |
| with torch.no_grad(): | |
| outputs = model(imgs_tensor, tokens_tensor, one_pass=True) | |
| processed_outputs = post_processor(outputs, img, tokenizer) | |
| vis = plot_results(img, processed_outputs, save_path="numpy_array") | |
| return vis, processed_outputs['cap'] | |
| gr.Interface( | |
| plot_inference, | |
| [gr.inputs.Image(type="pil", label="Input"), gr.inputs.Textbox(label="input text")], | |
| [gr.outputs.Image(type="numpy", label="Output"), gr.outputs.Textbox(label="Predicted Words")], | |
| title=title, | |
| description=description, | |
| examples=examples, | |
| cache_examples=True, | |
| ).launch() |