Re-add images in inference. Inference endpoint model still broken context length
Browse files- app.py +1 -1
- e2bqwen.py +128 -168
app.py
CHANGED
|
@@ -29,8 +29,8 @@ if not os.path.exists(TMP_DIR):
|
|
| 29 |
hf_token = os.getenv("HUGGINGFACE_API_KEY")
|
| 30 |
login(token=hf_token)
|
| 31 |
model = QwenVLAPIModel(
|
|
|
|
| 32 |
hf_token = hf_token,
|
| 33 |
-
hf_base_url="https://s41ydkv0iyjeokyj.us-east-1.aws.endpoints.huggingface.cloud"
|
| 34 |
)
|
| 35 |
|
| 36 |
|
|
|
|
| 29 |
hf_token = os.getenv("HUGGINGFACE_API_KEY")
|
| 30 |
login(token=hf_token)
|
| 31 |
model = QwenVLAPIModel(
|
| 32 |
+
hf_base_url="https://s41ydkv0iyjeokyj.us-east-1.aws.endpoints.huggingface.cloud",
|
| 33 |
hf_token = hf_token,
|
|
|
|
| 34 |
)
|
| 35 |
|
| 36 |
|
e2bqwen.py
CHANGED
|
@@ -346,7 +346,47 @@ class E2BVisionAgent(CodeAgent):
|
|
| 346 |
self.desktop.kill()
|
| 347 |
print("E2B sandbox terminated")
|
| 348 |
|
| 349 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 350 |
|
| 351 |
# class QwenVLAPIModel(Model):
|
| 352 |
# """Model wrapper for Qwen2.5VL API with fallback mechanism"""
|
|
@@ -359,16 +399,25 @@ from smolagents import HfApiModel
|
|
| 359 |
# hf_base_url: str = "https://n5wr7lfx6wp94tvl.us-east-1.aws.endpoints.huggingface.cloud"
|
| 360 |
# ):
|
| 361 |
# super().__init__()
|
|
|
|
| 362 |
# self.model_id = model_path
|
|
|
|
|
|
|
| 363 |
# self.hf_base_url = hf_base_url
|
| 364 |
-
|
| 365 |
-
#
|
| 366 |
-
#
|
|
|
|
| 367 |
# )
|
| 368 |
-
|
| 369 |
-
#
|
| 370 |
-
|
| 371 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 372 |
# )
|
| 373 |
|
| 374 |
# def __call__(
|
|
@@ -377,15 +426,27 @@ from smolagents import HfApiModel
|
|
| 377 |
# stop_sequences: Optional[List[str]] = None,
|
| 378 |
# **kwargs
|
| 379 |
# ) -> ChatMessage:
|
|
|
|
| 380 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 381 |
# try:
|
| 382 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 383 |
# except Exception as e:
|
| 384 |
# print(f"HF endpoint failed with error: {e}. Falling back to hyperbolic.")
|
| 385 |
-
|
| 386 |
-
|
|
|
|
| 387 |
# try:
|
| 388 |
-
# return self.
|
| 389 |
# except Exception as e:
|
| 390 |
# raise Exception(f"Both endpoints failed. Last error: {e}")
|
| 391 |
|
|
@@ -411,7 +472,6 @@ from smolagents import HfApiModel
|
|
| 411 |
# else:
|
| 412 |
# # Image is a PIL image or similar object
|
| 413 |
# img_byte_arr = BytesIO()
|
| 414 |
-
# item["image"].save(img_byte_arr, format="PNG")
|
| 415 |
# base64_image = base64.b64encode(img_byte_arr.getvalue()).decode("utf-8")
|
| 416 |
|
| 417 |
# content.append({
|
|
@@ -428,167 +488,67 @@ from smolagents import HfApiModel
|
|
| 428 |
|
| 429 |
# return formatted_messages
|
| 430 |
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
def __init__(
|
| 435 |
-
self,
|
| 436 |
-
model_path: str = "Qwen/Qwen2.5-VL-72B-Instruct",
|
| 437 |
-
provider: str = "hyperbolic",
|
| 438 |
-
hf_token: str = None,
|
| 439 |
-
hf_base_url: str = "https://n5wr7lfx6wp94tvl.us-east-1.aws.endpoints.huggingface.cloud"
|
| 440 |
-
):
|
| 441 |
-
super().__init__()
|
| 442 |
-
self.model_path = model_path
|
| 443 |
-
self.model_id = model_path
|
| 444 |
-
self.provider = provider
|
| 445 |
-
self.hf_token = hf_token
|
| 446 |
-
self.hf_base_url = hf_base_url
|
| 447 |
-
|
| 448 |
-
# Initialize hyperbolic client
|
| 449 |
-
self.hyperbolic_client = InferenceClient(
|
| 450 |
-
provider=self.provider,
|
| 451 |
-
)
|
| 452 |
-
|
| 453 |
-
assert not self.hf_base_url.endswith("/v1/"), "Enter your base url without '/v1/' suffix."
|
| 454 |
-
|
| 455 |
-
# Initialize HF OpenAI-compatible client if token is provided
|
| 456 |
-
self.hf_client = None
|
| 457 |
-
from openai import OpenAI
|
| 458 |
-
self.hf_client = OpenAI(
|
| 459 |
-
base_url=self.hf_base_url + "/v1/",
|
| 460 |
-
api_key=self.hf_token
|
| 461 |
-
)
|
| 462 |
-
|
| 463 |
-
def __call__(
|
| 464 |
-
self,
|
| 465 |
-
messages: List[Dict[str, Any]],
|
| 466 |
-
stop_sequences: Optional[List[str]] = None,
|
| 467 |
-
**kwargs
|
| 468 |
-
) -> ChatMessage:
|
| 469 |
-
"""Convert a list of messages to an API request with fallback mechanism"""
|
| 470 |
-
|
| 471 |
-
# Format messages once for both APIs
|
| 472 |
-
formatted_messages = self._format_messages(messages)
|
| 473 |
-
|
| 474 |
-
# First try the HF endpoint if available - THIS ALWAYS FAILS SO SKIPPING
|
| 475 |
-
try:
|
| 476 |
-
completion = self._call_hf_endpoint(
|
| 477 |
-
formatted_messages,
|
| 478 |
-
stop_sequences,
|
| 479 |
-
**kwargs
|
| 480 |
-
)
|
| 481 |
-
return ChatMessage(role=MessageRole.ASSISTANT, content=completion)
|
| 482 |
-
except Exception as e:
|
| 483 |
-
print(f"HF endpoint failed with error: {e}. Falling back to hyperbolic.")
|
| 484 |
-
# Continue to fallback
|
| 485 |
-
|
| 486 |
-
# Fallback to hyperbolic
|
| 487 |
-
try:
|
| 488 |
-
return self._call_hyperbolic(formatted_messages, stop_sequences, **kwargs)
|
| 489 |
-
except Exception as e:
|
| 490 |
-
raise Exception(f"Both endpoints failed. Last error: {e}")
|
| 491 |
-
|
| 492 |
-
def _format_messages(self, messages: List[Dict[str, Any]]):
|
| 493 |
-
"""Format messages for API requests - works for both endpoints"""
|
| 494 |
-
|
| 495 |
-
formatted_messages = []
|
| 496 |
-
|
| 497 |
-
for msg in messages:
|
| 498 |
-
role = msg["role"]
|
| 499 |
-
content = []
|
| 500 |
-
|
| 501 |
-
if isinstance(msg["content"], list):
|
| 502 |
-
for item in msg["content"]:
|
| 503 |
-
if item["type"] == "text":
|
| 504 |
-
content.append({"type": "text", "text": item["text"]})
|
| 505 |
-
elif item["type"] == "image":
|
| 506 |
-
# # Handle image path or direct image object
|
| 507 |
-
# if isinstance(item["image"], str):
|
| 508 |
-
# # Image is a path
|
| 509 |
-
# with open(item["image"], "rb") as image_file:
|
| 510 |
-
# base64_image = base64.b64encode(image_file.read()).decode("utf-8")
|
| 511 |
-
# else:
|
| 512 |
-
# # Image is a PIL image or similar object
|
| 513 |
-
# img_byte_arr = BytesIO()
|
| 514 |
-
# base64_image = base64.b64encode(img_byte_arr.getvalue()).decode("utf-8")
|
| 515 |
-
|
| 516 |
-
# content.append({
|
| 517 |
-
# "type": "image_url",
|
| 518 |
-
# "image_url": {
|
| 519 |
-
# "url": f"data:image/png;base64,{base64_image}"
|
| 520 |
-
# }
|
| 521 |
-
# })
|
| 522 |
-
pass
|
| 523 |
-
else:
|
| 524 |
-
# Plain text message
|
| 525 |
-
content = [{"type": "text", "text": msg["content"]}]
|
| 526 |
-
|
| 527 |
-
formatted_messages.append({"role": role, "content": content})
|
| 528 |
-
|
| 529 |
-
return formatted_messages
|
| 530 |
-
|
| 531 |
-
def _call_hf_endpoint(self, formatted_messages, stop_sequences=None, **kwargs):
|
| 532 |
-
"""Call the Hugging Face OpenAI-compatible endpoint"""
|
| 533 |
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
|
| 559 |
|
| 560 |
-
|
| 561 |
-
|
| 562 |
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
|
| 572 |
-
|
| 573 |
-
|
| 574 |
|
| 575 |
-
|
| 576 |
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
| 586 |
|
| 587 |
-
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
|
| 594 |
-
|
|
|
|
| 346 |
self.desktop.kill()
|
| 347 |
print("E2B sandbox terminated")
|
| 348 |
|
| 349 |
+
|
| 350 |
+
class QwenVLAPIModel(Model):
|
| 351 |
+
"""Model wrapper for Qwen2.5VL API with fallback mechanism"""
|
| 352 |
+
|
| 353 |
+
def __init__(
|
| 354 |
+
self,
|
| 355 |
+
hf_base_url,
|
| 356 |
+
model_path: str = "Qwen/Qwen2.5-VL-72B-Instruct",
|
| 357 |
+
provider: str = "hyperbolic",
|
| 358 |
+
hf_token: str = None,
|
| 359 |
+
):
|
| 360 |
+
super().__init__()
|
| 361 |
+
self.model_id = model_path
|
| 362 |
+
self.hf_base_url = hf_base_url
|
| 363 |
+
self.dedicated_endpoint_model = HfApiModel(
|
| 364 |
+
hf_base_url,
|
| 365 |
+
token=hf_token
|
| 366 |
+
)
|
| 367 |
+
self.fallback_model = HfApiModel(
|
| 368 |
+
model_path,
|
| 369 |
+
provider=provider,
|
| 370 |
+
token=hf_token,
|
| 371 |
+
)
|
| 372 |
+
|
| 373 |
+
def __call__(
|
| 374 |
+
self,
|
| 375 |
+
messages: List[Dict[str, Any]],
|
| 376 |
+
stop_sequences: Optional[List[str]] = None,
|
| 377 |
+
**kwargs
|
| 378 |
+
) -> ChatMessage:
|
| 379 |
+
|
| 380 |
+
try:
|
| 381 |
+
return self.dedicated_endpoint_model(messages, stop_sequences, **kwargs)
|
| 382 |
+
except Exception as e:
|
| 383 |
+
print(f"HF endpoint failed with error: {e}. Falling back to hyperbolic.")
|
| 384 |
+
|
| 385 |
+
# Continue to fallback
|
| 386 |
+
try:
|
| 387 |
+
return self.fallback_model(messages, stop_sequences, **kwargs)
|
| 388 |
+
except Exception as e:
|
| 389 |
+
raise Exception(f"Both endpoints failed. Last error: {e}")
|
| 390 |
|
| 391 |
# class QwenVLAPIModel(Model):
|
| 392 |
# """Model wrapper for Qwen2.5VL API with fallback mechanism"""
|
|
|
|
| 399 |
# hf_base_url: str = "https://n5wr7lfx6wp94tvl.us-east-1.aws.endpoints.huggingface.cloud"
|
| 400 |
# ):
|
| 401 |
# super().__init__()
|
| 402 |
+
# self.model_path = model_path
|
| 403 |
# self.model_id = model_path
|
| 404 |
+
# self.provider = provider
|
| 405 |
+
# self.hf_token = hf_token
|
| 406 |
# self.hf_base_url = hf_base_url
|
| 407 |
+
|
| 408 |
+
# # Initialize hyperbolic client
|
| 409 |
+
# self.hyperbolic_client = InferenceClient(
|
| 410 |
+
# provider=self.provider,
|
| 411 |
# )
|
| 412 |
+
|
| 413 |
+
# assert not self.hf_base_url.endswith("/v1/"), "Enter your base url without '/v1/' suffix."
|
| 414 |
+
|
| 415 |
+
# # Initialize HF OpenAI-compatible client if token is provided
|
| 416 |
+
# self.hf_client = None
|
| 417 |
+
# from openai import OpenAI
|
| 418 |
+
# self.hf_client = OpenAI(
|
| 419 |
+
# base_url=self.hf_base_url + "/v1/",
|
| 420 |
+
# api_key=self.hf_token
|
| 421 |
# )
|
| 422 |
|
| 423 |
# def __call__(
|
|
|
|
| 426 |
# stop_sequences: Optional[List[str]] = None,
|
| 427 |
# **kwargs
|
| 428 |
# ) -> ChatMessage:
|
| 429 |
+
# """Convert a list of messages to an API request with fallback mechanism"""
|
| 430 |
|
| 431 |
+
# # Format messages once for both APIs
|
| 432 |
+
# formatted_messages = self._format_messages(messages)
|
| 433 |
+
|
| 434 |
+
# # First try the HF endpoint if available - THIS ALWAYS FAILS SO SKIPPING
|
| 435 |
# try:
|
| 436 |
+
# completion = self._call_hf_endpoint(
|
| 437 |
+
# formatted_messages,
|
| 438 |
+
# stop_sequences,
|
| 439 |
+
# **kwargs
|
| 440 |
+
# )
|
| 441 |
+
# print("SUCCESSFUL call of inference endpoint")
|
| 442 |
+
# return ChatMessage(role=MessageRole.ASSISTANT, content=completion)
|
| 443 |
# except Exception as e:
|
| 444 |
# print(f"HF endpoint failed with error: {e}. Falling back to hyperbolic.")
|
| 445 |
+
# # Continue to fallback
|
| 446 |
+
|
| 447 |
+
# # Fallback to hyperbolic
|
| 448 |
# try:
|
| 449 |
+
# return self._call_hyperbolic(formatted_messages, stop_sequences, **kwargs)
|
| 450 |
# except Exception as e:
|
| 451 |
# raise Exception(f"Both endpoints failed. Last error: {e}")
|
| 452 |
|
|
|
|
| 472 |
# else:
|
| 473 |
# # Image is a PIL image or similar object
|
| 474 |
# img_byte_arr = BytesIO()
|
|
|
|
| 475 |
# base64_image = base64.b64encode(img_byte_arr.getvalue()).decode("utf-8")
|
| 476 |
|
| 477 |
# content.append({
|
|
|
|
| 488 |
|
| 489 |
# return formatted_messages
|
| 490 |
|
| 491 |
+
# def _call_hf_endpoint(self, formatted_messages, stop_sequences=None, **kwargs):
|
| 492 |
+
# """Call the Hugging Face OpenAI-compatible endpoint"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 493 |
|
| 494 |
+
# # Extract parameters with defaults
|
| 495 |
+
# max_tokens = kwargs.get("max_new_tokens", 4096)
|
| 496 |
+
# temperature = kwargs.get("temperature", 0.7)
|
| 497 |
+
# top_p = kwargs.get("top_p", 0.9)
|
| 498 |
+
# stream = kwargs.get("stream", False)
|
| 499 |
|
| 500 |
+
# completion = self.hf_client.chat.completions.create(
|
| 501 |
+
# model="tgi", # Model name for the endpoint
|
| 502 |
+
# messages=formatted_messages,
|
| 503 |
+
# max_tokens=max_tokens,
|
| 504 |
+
# temperature=temperature,
|
| 505 |
+
# top_p=top_p,
|
| 506 |
+
# stream=stream,
|
| 507 |
+
# stop=stop_sequences
|
| 508 |
+
# )
|
| 509 |
|
| 510 |
+
# if stream:
|
| 511 |
+
# # For streaming responses, return a generator
|
| 512 |
+
# def stream_generator():
|
| 513 |
+
# for chunk in completion:
|
| 514 |
+
# yield chunk.choices[0].delta.content or ""
|
| 515 |
+
# return stream_generator()
|
| 516 |
+
# else:
|
| 517 |
+
# # For non-streaming, return the full text
|
| 518 |
+
# return completion.choices[0].message.content
|
| 519 |
|
| 520 |
+
# def _call_hyperbolic(self, formatted_messages, stop_sequences=None, **kwargs):
|
| 521 |
+
# """Call the hyperbolic API"""
|
| 522 |
|
| 523 |
+
# completion = self.hyperbolic_client.chat.completions.create(
|
| 524 |
+
# model=self.model_path,
|
| 525 |
+
# messages=formatted_messages,
|
| 526 |
+
# max_tokens=kwargs.get("max_new_tokens", 4096),
|
| 527 |
+
# temperature=kwargs.get("temperature", 0.7),
|
| 528 |
+
# top_p=kwargs.get("top_p", 0.9),
|
| 529 |
+
# stop=stop_sequences
|
| 530 |
+
# )
|
| 531 |
|
| 532 |
+
# # Extract the response text
|
| 533 |
+
# output_text = completion.choices[0].message.content
|
| 534 |
|
| 535 |
+
# return ChatMessage(role=MessageRole.ASSISTANT, content=output_text)
|
| 536 |
|
| 537 |
+
# def to_dict(self) -> Dict[str, Any]:
|
| 538 |
+
# """Convert the model to a dictionary"""
|
| 539 |
+
# return {
|
| 540 |
+
# "class": self.__class__.__name__,
|
| 541 |
+
# "model_path": self.model_path,
|
| 542 |
+
# "provider": self.provider,
|
| 543 |
+
# "hf_base_url": self.hf_base_url,
|
| 544 |
+
# # We don't save the API keys for security reasons
|
| 545 |
+
# }
|
| 546 |
|
| 547 |
+
# @classmethod
|
| 548 |
+
# def from_dict(cls, data: Dict[str, Any]) -> "QwenVLAPIModel":
|
| 549 |
+
# """Create a model from a dictionary"""
|
| 550 |
+
# return cls(
|
| 551 |
+
# model_path=data.get("model_path", "Qwen/Qwen2.5-VL-72B-Instruct"),
|
| 552 |
+
# provider=data.get("provider", "hyperbolic"),
|
| 553 |
+
# hf_base_url=data.get("hf_base_url", "https://s41ydkv0iyjeokyj.us-east-1.aws.endpoints.huggingface.cloud"),
|
| 554 |
+
# )
|