File size: 15,498 Bytes
b4971bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
#!/usr/bin/env python3
"""
Incremental Document Addition for VedaMD Vector Store
======================================================

This script allows you to add single documents to an existing vector store
without rebuilding the entire index.

Features:
- Process single PDF file
- Detect duplicates (hash-based)
- Add to existing FAISS index
- Update metadata
- Incremental upload to HF Hub
- No full rebuild required

Usage:
    python scripts/add_document.py \\
        --file ./new_guideline.pdf \\
        --citation "SLCOG Hypertension Guidelines 2025" \\
        --vector-store-dir ./data/vector_store \\
        --upload

Author: VedaMD Team
Date: October 22, 2025
Version: 1.0.0
"""

import os
import sys
import json
import hashlib
import logging
import argparse
from pathlib import Path
from typing import Dict, Optional, List
from datetime import datetime
import warnings

# Add parent directory to path for imports
sys.path.insert(0, str(Path(__file__).parent))

# Import from build_vector_store
try:
    from build_vector_store import PDFExtractor, MedicalChunker
except ImportError:
    # If running standalone, define minimal versions
    logger = logging.getLogger(__name__)
    logger.error("Cannot import from build_vector_store.py. Make sure it's in the same directory.")
    sys.exit(1)

# Embeddings and vector store
try:
    from sentence_transformers import SentenceTransformer
    import faiss
    import numpy as np
    HAS_EMBEDDINGS = True
except ImportError:
    HAS_EMBEDDINGS = False
    raise ImportError("Required packages not installed. Run: pip install sentence-transformers faiss-cpu numpy")

# Hugging Face Hub
try:
    from huggingface_hub import HfApi
    HAS_HF = True
except ImportError:
    HAS_HF = False
    warnings.warn("Hugging Face Hub not available. Install with: pip install huggingface-hub")

# Setup logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[
        logging.StreamHandler(sys.stdout),
        logging.FileHandler('add_document.log')
    ]
)
logger = logging.getLogger(__name__)


class DocumentAdder:
    """Add documents incrementally to existing vector store"""

    def __init__(self, vector_store_dir: str):
        self.vector_store_dir = Path(vector_store_dir)

        if not self.vector_store_dir.exists():
            raise FileNotFoundError(f"Vector store directory not found: {self.vector_store_dir}")

        logger.info(f"๐Ÿ“ Vector store directory: {self.vector_store_dir}")

        # Load existing vector store
        self.load_vector_store()

    def load_vector_store(self):
        """Load existing vector store from disk"""
        logger.info("๐Ÿ“ฅ Loading existing vector store...")

        # Load config
        config_path = self.vector_store_dir / "config.json"
        if not config_path.exists():
            raise FileNotFoundError(f"Config file not found: {config_path}")

        with open(config_path, 'r') as f:
            self.config = json.load(f)

        logger.info(f"โœ… Loaded config: {self.config['embedding_model']}")

        # Load FAISS index
        index_path = self.vector_store_dir / "faiss_index.bin"
        if not index_path.exists():
            raise FileNotFoundError(f"FAISS index not found: {index_path}")

        self.index = faiss.read_index(str(index_path))
        logger.info(f"โœ… Loaded FAISS index: {self.index.ntotal} vectors")

        # Load documents
        docs_path = self.vector_store_dir / "documents.json"
        if not docs_path.exists():
            raise FileNotFoundError(f"Documents file not found: {docs_path}")

        with open(docs_path, 'r', encoding='utf-8') as f:
            self.documents = json.load(f)

        logger.info(f"โœ… Loaded {len(self.documents)} documents")

        # Load metadata
        metadata_path = self.vector_store_dir / "metadata.json"
        if not metadata_path.exists():
            raise FileNotFoundError(f"Metadata file not found: {metadata_path}")

        with open(metadata_path, 'r', encoding='utf-8') as f:
            self.metadata = json.load(f)

        logger.info(f"โœ… Loaded {len(self.metadata)} metadata entries")

        # Load embedding model
        logger.info(f"๐Ÿค– Loading embedding model: {self.config['embedding_model']}")
        self.embedding_model = SentenceTransformer(self.config['embedding_model'])
        self.embedding_dim = self.embedding_model.get_sentence_embedding_dimension()

        if self.embedding_dim != self.config['embedding_dim']:
            raise ValueError(
                f"Embedding dimension mismatch! "
                f"Expected {self.config['embedding_dim']}, got {self.embedding_dim}"
            )

        logger.info(f"โœ… Embedding model loaded (dim={self.embedding_dim})")

        # Initialize chunker
        self.chunker = MedicalChunker(
            chunk_size=self.config.get('chunk_size', 1000),
            chunk_overlap=self.config.get('chunk_overlap', 100)
        )

    def check_duplicate(self, file_hash: str, filename: str) -> bool:
        """Check if document already exists in vector store"""
        logger.info(f"๐Ÿ” Checking for duplicates...")

        for meta in self.metadata:
            if meta.get('file_hash') == file_hash:
                logger.warning(f"โš ๏ธ Duplicate detected: {meta['source']} (hash: {file_hash[:8]}...)")
                return True

            # Also check by filename
            if meta.get('source') == filename:
                logger.warning(f"โš ๏ธ File with same name exists: {filename}")
                # Don't return True here - might be updated version
                logger.info(f"   Continuing anyway (different content)")

        logger.info(f"โœ… No duplicates found")
        return False

    def add_document(
        self,
        pdf_path: str,
        citation: Optional[str] = None,
        category: Optional[str] = None,
        skip_duplicates: bool = True
    ) -> int:
        """Add a single document to the vector store"""
        pdf_path = Path(pdf_path)

        if not pdf_path.exists():
            raise FileNotFoundError(f"PDF file not found: {pdf_path}")

        logger.info(f"\n{'='*60}")
        logger.info(f"๐Ÿ“„ Adding document: {pdf_path.name}")
        logger.info(f"{'='*60}")

        try:
            # Extract text
            text, extraction_metadata = PDFExtractor.extract_text(str(pdf_path))

            if not text or len(text) < 100:
                logger.warning(f"โš ๏ธ Extracted text too short ({len(text)} chars), skipping")
                return 0

            # Generate file hash
            file_hash = hashlib.md5(text.encode()).hexdigest()
            logger.info(f"๐Ÿ”‘ File hash: {file_hash[:16]}...")

            # Check for duplicates
            if skip_duplicates and self.check_duplicate(file_hash, pdf_path.name):
                logger.warning(f"โš ๏ธ Skipping duplicate document")
                return 0

            # Chunk text
            chunks = self.chunker.chunk_text(text, pdf_path.name)

            if not chunks:
                logger.warning(f"โš ๏ธ No chunks created from {pdf_path.name}")
                return 0

            logger.info(f"๐Ÿ“ Created {len(chunks)} chunks")

            # Generate embeddings
            logger.info(f"๐Ÿงฎ Generating embeddings...")
            chunk_texts = [chunk["content"] for chunk in chunks]
            chunk_embeddings = self.embedding_model.encode(
                chunk_texts,
                show_progress_bar=True,
                batch_size=32
            )

            # Add to FAISS index
            logger.info(f"๐Ÿ“Š Adding to FAISS index...")
            embeddings_array = np.array(chunk_embeddings).astype('float32')
            self.index.add(embeddings_array)

            # Add documents and metadata
            base_chunk_id = len(self.documents)
            for i, (chunk, embedding) in enumerate(zip(chunks, chunk_embeddings)):
                self.documents.append(chunk["content"])
                self.metadata.append({
                    "source": pdf_path.name,
                    "section": chunk["section"],
                    "chunk_id": base_chunk_id + i,
                    "chunk_size": chunk["size"],
                    "file_hash": file_hash,
                    "extraction_method": extraction_metadata["method"],
                    "total_pages": extraction_metadata["pages"],
                    "citation": citation or pdf_path.name,
                    "category": category or "General",
                    "added_at": datetime.now().isoformat(),
                    "added_by": "add_document.py"
                })

            logger.info(f"โœ… Added {len(chunks)} chunks to vector store")
            logger.info(f"๐Ÿ“Š New total: {self.index.ntotal} vectors")

            return len(chunks)

        except Exception as e:
            logger.error(f"โŒ Error adding document: {e}")
            raise

    def save_vector_store(self):
        """Save updated vector store to disk"""
        logger.info(f"\n{'='*60}")
        logger.info(f"๐Ÿ’พ Saving updated vector store...")
        logger.info(f"{'='*60}")

        # Backup existing files first
        backup_dir = self.vector_store_dir / "backups" / datetime.now().strftime("%Y%m%d_%H%M%S")
        backup_dir.mkdir(parents=True, exist_ok=True)

        for filename in ["faiss_index.bin", "documents.json", "metadata.json"]:
            src = self.vector_store_dir / filename
            if src.exists():
                dst = backup_dir / filename
                import shutil
                shutil.copy2(src, dst)

        logger.info(f"๐Ÿ“ฆ Backup created: {backup_dir}")

        # Save FAISS index
        index_path = self.vector_store_dir / "faiss_index.bin"
        faiss.write_index(self.index, str(index_path))
        logger.info(f"โœ… Saved FAISS index: {index_path}")

        # Save documents
        docs_path = self.vector_store_dir / "documents.json"
        with open(docs_path, 'w', encoding='utf-8') as f:
            json.dump(self.documents, f, ensure_ascii=False, indent=2)
        logger.info(f"โœ… Saved documents: {docs_path}")

        # Save metadata
        metadata_path = self.vector_store_dir / "metadata.json"
        with open(metadata_path, 'w', encoding='utf-8') as f:
            json.dump(self.metadata, f, ensure_ascii=False, indent=2)
        logger.info(f"โœ… Saved metadata: {metadata_path}")

        # Update config
        self.config["total_documents"] = len(self.documents)
        self.config["total_chunks"] = len(self.documents)
        self.config["last_updated"] = datetime.now().isoformat()

        config_path = self.vector_store_dir / "config.json"
        with open(config_path, 'w', encoding='utf-8') as f:
            json.dump(self.config, f, indent=2)
        logger.info(f"โœ… Updated config: {config_path}")

    def upload_to_hf(self, repo_id: str, token: Optional[str] = None):
        """Upload updated vector store to Hugging Face Hub"""
        if not HAS_HF:
            logger.warning("โš ๏ธ Hugging Face Hub not available, skipping upload")
            return

        logger.info(f"\n{'='*60}")
        logger.info(f"โ˜๏ธ Uploading to Hugging Face Hub...")
        logger.info(f"๐Ÿ“ฆ Repository: {repo_id}")
        logger.info(f"{'='*60}")

        try:
            api = HfApi(token=token)

            # Upload updated files
            files_to_upload = [
                "faiss_index.bin",
                "documents.json",
                "metadata.json",
                "config.json"
            ]

            for filename in files_to_upload:
                file_path = self.vector_store_dir / filename
                if file_path.exists():
                    logger.info(f"๐Ÿ“ค Uploading {filename}...")
                    api.upload_file(
                        path_or_fileobj=str(file_path),
                        path_in_repo=filename,
                        repo_id=repo_id,
                        repo_type="dataset",
                        token=token
                    )
                    logger.info(f"โœ… Uploaded {filename}")

            logger.info(f"๐ŸŽ‰ Upload complete! View at: https://huggingface.co/datasets/{repo_id}")

        except Exception as e:
            logger.error(f"โŒ Upload failed: {e}")
            raise


def main():
    parser = argparse.ArgumentParser(
        description="Add a document to existing VedaMD Vector Store",
        formatter_class=argparse.RawDescriptionHelpFormatter,
        epilog="""
Examples:
  # Add document locally
  python scripts/add_document.py \\
    --file ./guidelines/new_protocol.pdf \\
    --citation "SLCOG Hypertension Guidelines 2025" \\
    --vector-store-dir ./data/vector_store

  # Add and upload to HF
  python scripts/add_document.py \\
    --file ./new_guideline.pdf \\
    --citation "WHO Clinical Guidelines 2025" \\
    --category "Obstetrics" \\
    --vector-store-dir ./data/vector_store \\
    --upload \\
    --repo-id sniro23/VedaMD-Vector-Store
        """
    )

    parser.add_argument(
        "--file",
        type=str,
        required=True,
        help="PDF file to add"
    )

    parser.add_argument(
        "--citation",
        type=str,
        help="Citation for the document"
    )

    parser.add_argument(
        "--category",
        type=str,
        help="Category/specialty (e.g., Obstetrics, Cardiology)"
    )

    parser.add_argument(
        "--vector-store-dir",
        type=str,
        default="./data/vector_store",
        help="Vector store directory"
    )

    parser.add_argument(
        "--no-duplicate-check",
        action="store_true",
        help="Skip duplicate detection"
    )

    parser.add_argument(
        "--upload",
        action="store_true",
        help="Upload to Hugging Face Hub after adding"
    )

    parser.add_argument(
        "--repo-id",
        type=str,
        help="Hugging Face repository ID"
    )

    parser.add_argument(
        "--hf-token",
        type=str,
        help="Hugging Face API token"
    )

    args = parser.parse_args()

    # Get HF token
    hf_token = args.hf_token or os.getenv("HF_TOKEN")

    # Validate upload arguments
    if args.upload and not args.repo_id:
        parser.error("--repo-id is required when --upload is specified")

    # Add document
    start_time = datetime.now()

    adder = DocumentAdder(args.vector_store_dir)

    chunks_added = adder.add_document(
        pdf_path=args.file,
        citation=args.citation,
        category=args.category,
        skip_duplicates=not args.no_duplicate_check
    )

    if chunks_added > 0:
        # Save updated vector store
        adder.save_vector_store()

        # Upload if requested
        if args.upload and args.repo_id:
            adder.upload_to_hf(args.repo_id, hf_token)

        # Summary
        duration = (datetime.now() - start_time).total_seconds()
        logger.info(f"\n{'='*60}")
        logger.info(f"โœ… DOCUMENT ADDED SUCCESSFULLY!")
        logger.info(f"{'='*60}")
        logger.info(f"๐Ÿ“Š Summary:")
        logger.info(f"  โ€ข Chunks added: {chunks_added}")
        logger.info(f"  โ€ข Total vectors: {adder.index.ntotal}")
        logger.info(f"  โ€ข Time taken: {duration:.2f} seconds")
        logger.info(f"{'='*60}\n")
    else:
        logger.warning(f"\nโš ๏ธ No chunks were added (possibly duplicate or invalid)")


if __name__ == "__main__":
    main()