File size: 21,089 Bytes
b4971bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
#!/usr/bin/env python3
"""
Automated Vector Store Builder for VedaMD
==========================================

This script automates the complete vector store creation process:
1. Scans directory for PDF documents
2. Extracts text using best available method (PyMuPDF โ†’ PDFPlumber โ†’ OCR)
3. Smart chunking with medical section awareness
4. Batch embedding generation
5. FAISS index creation
6. Metadata generation (citations, sources, quality scores)
7. Automatic Hugging Face Hub upload
8. Configuration file generation

Usage:
    python scripts/build_vector_store.py \\
        --input-dir ./Obs \\
        --output-dir ./data/vector_store \\
        --repo-id sniro23/VedaMD-Vector-Store \\
        --upload

Author: VedaMD Team
Date: October 22, 2025
Version: 1.0.0
"""

import os
import sys
import json
import hashlib
import logging
import argparse
from pathlib import Path
from typing import List, Dict, Tuple, Optional
from datetime import datetime
import warnings

# PDF processing
try:
    import fitz  # PyMuPDF
    HAS_PYMUPDF = True
except ImportError:
    HAS_PYMUPDF = False
    warnings.warn("PyMuPDF not available. Install with: pip install PyMuPDF")

try:
    import pdfplumber
    HAS_PDFPLUMBER = True
except ImportError:
    HAS_PDFPLUMBER = False
    warnings.warn("pdfplumber not available. Install with: pip install pdfplumber")

# Embeddings and vector store
try:
    from sentence_transformers import SentenceTransformer
    import faiss
    import numpy as np
    HAS_EMBEDDINGS = True
except ImportError:
    HAS_EMBEDDINGS = False
    raise ImportError("Required packages not installed. Run: pip install sentence-transformers faiss-cpu numpy")

# Hugging Face Hub
try:
    from huggingface_hub import HfApi, create_repo
    HAS_HF = True
except ImportError:
    HAS_HF = False
    warnings.warn("Hugging Face Hub not available. Install with: pip install huggingface-hub")

# Setup logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[
        logging.StreamHandler(sys.stdout),
        logging.FileHandler('vector_store_build.log')
    ]
)
logger = logging.getLogger(__name__)


class PDFExtractor:
    """Handles PDF text extraction with multiple fallback methods"""

    @staticmethod
    def extract_with_pymupdf(pdf_path: str) -> Tuple[str, Dict]:
        """Extract text using PyMuPDF (fastest, most reliable)"""
        if not HAS_PYMUPDF:
            raise ImportError("PyMuPDF not available")

        logger.info(f"๐Ÿ“„ Extracting with PyMuPDF: {pdf_path}")
        text = ""
        metadata = {"method": "pymupdf", "pages": 0}

        try:
            doc = fitz.open(pdf_path)
            metadata["pages"] = len(doc)
            metadata["title"] = doc.metadata.get("title", "")
            metadata["author"] = doc.metadata.get("author", "")

            for page_num, page in enumerate(doc, 1):
                page_text = page.get_text()
                text += f"\n--- Page {page_num} ---\n{page_text}"

            doc.close()
            logger.info(f"โœ… Extracted {len(text)} characters from {metadata['pages']} pages")
            return text, metadata

        except Exception as e:
            logger.error(f"โŒ PyMuPDF extraction failed: {e}")
            raise

    @staticmethod
    def extract_with_pdfplumber(pdf_path: str) -> Tuple[str, Dict]:
        """Extract text using pdfplumber (better table handling)"""
        if not HAS_PDFPLUMBER:
            raise ImportError("pdfplumber not available")

        logger.info(f"๐Ÿ“„ Extracting with pdfplumber: {pdf_path}")
        text = ""
        metadata = {"method": "pdfplumber", "pages": 0}

        try:
            with pdfplumber.open(pdf_path) as pdf:
                metadata["pages"] = len(pdf.pages)

                for page_num, page in enumerate(pdf.pages, 1):
                    page_text = page.extract_text() or ""
                    text += f"\n--- Page {page_num} ---\n{page_text}"

            logger.info(f"โœ… Extracted {len(text)} characters from {metadata['pages']} pages")
            return text, metadata

        except Exception as e:
            logger.error(f"โŒ pdfplumber extraction failed: {e}")
            raise

    @staticmethod
    def extract_text(pdf_path: str) -> Tuple[str, Dict]:
        """Extract text using best available method with fallbacks"""
        errors = []

        # Try PyMuPDF first (fastest)
        if HAS_PYMUPDF:
            try:
                return PDFExtractor.extract_with_pymupdf(pdf_path)
            except Exception as e:
                errors.append(f"PyMuPDF: {e}")
                logger.warning(f"โš ๏ธ PyMuPDF failed, trying pdfplumber...")

        # Fallback to pdfplumber
        if HAS_PDFPLUMBER:
            try:
                return PDFExtractor.extract_with_pdfplumber(pdf_path)
            except Exception as e:
                errors.append(f"pdfplumber: {e}")
                logger.warning(f"โš ๏ธ pdfplumber failed")

        # If all methods fail
        raise Exception(f"All extraction methods failed: {'; '.join(errors)}")


class MedicalChunker:
    """Smart chunking with medical section awareness"""

    def __init__(self, chunk_size: int = 1000, chunk_overlap: int = 100):
        self.chunk_size = chunk_size
        self.chunk_overlap = chunk_overlap

        # Medical section headers to preserve
        self.section_markers = [
            "INTRODUCTION", "BACKGROUND", "DEFINITION", "EPIDEMIOLOGY",
            "PATHOPHYSIOLOGY", "CLINICAL FEATURES", "DIAGNOSIS", "MANAGEMENT",
            "TREATMENT", "PREVENTION", "COMPLICATIONS", "PROGNOSIS",
            "REFERENCES", "GUIDELINES", "PROTOCOL", "RECOMMENDATIONS"
        ]

    def chunk_text(self, text: str, source: str) -> List[Dict]:
        """Split text into chunks while preserving medical sections"""
        logger.info(f"๐Ÿ“ Chunking text from {source}")

        # Clean text
        text = text.strip()
        if not text:
            logger.warning(f"โš ๏ธ Empty text from {source}")
            return []

        chunks = []
        current_chunk = ""
        current_section = "General"

        # Split by paragraphs
        paragraphs = text.split('\n\n')

        for para in paragraphs:
            para = para.strip()
            if not para:
                continue

            # Check if paragraph is a section header
            para_upper = para.upper()
            for marker in self.section_markers:
                if marker in para_upper and len(para) < 100:
                    current_section = para
                    break

            # Add paragraph to current chunk
            if len(current_chunk) + len(para) + 2 <= self.chunk_size:
                current_chunk += f"\n\n{para}"
            else:
                # Save current chunk
                if current_chunk.strip():
                    chunks.append({
                        "content": current_chunk.strip(),
                        "source": source,
                        "section": current_section,
                        "size": len(current_chunk)
                    })

                # Start new chunk with overlap
                if self.chunk_overlap > 0:
                    # Keep last few sentences for context
                    sentences = current_chunk.split('. ')
                    overlap_text = '. '.join(sentences[-2:]) if len(sentences) > 1 else ""
                    current_chunk = f"{overlap_text}\n\n{para}"
                else:
                    current_chunk = para

        # Add final chunk
        if current_chunk.strip():
            chunks.append({
                "content": current_chunk.strip(),
                "source": source,
                "section": current_section,
                "size": len(current_chunk)
            })

        logger.info(f"โœ… Created {len(chunks)} chunks from {source}")
        return chunks


class VectorStoreBuilder:
    """Main vector store builder class"""

    def __init__(
        self,
        input_dir: str,
        output_dir: str,
        embedding_model: str = "sentence-transformers/all-MiniLM-L6-v2",
        chunk_size: int = 1000,
        chunk_overlap: int = 100
    ):
        self.input_dir = Path(input_dir)
        self.output_dir = Path(output_dir)
        self.embedding_model_name = embedding_model
        self.chunk_size = chunk_size
        self.chunk_overlap = chunk_overlap

        # Create output directory
        self.output_dir.mkdir(parents=True, exist_ok=True)

        # Initialize components
        logger.info(f"๐Ÿ”ง Initializing vector store builder...")
        logger.info(f"๐Ÿ“ Input directory: {self.input_dir}")
        logger.info(f"๐Ÿ“ Output directory: {self.output_dir}")

        # Load embedding model
        logger.info(f"๐Ÿค– Loading embedding model: {self.embedding_model_name}")
        self.embedding_model = SentenceTransformer(self.embedding_model_name)
        self.embedding_dim = self.embedding_model.get_sentence_embedding_dimension()
        logger.info(f"โœ… Embedding dimension: {self.embedding_dim}")

        # Initialize chunker
        self.chunker = MedicalChunker(chunk_size, chunk_overlap)

        # Storage
        self.documents = []
        self.embeddings = []
        self.metadata = []

    def scan_pdfs(self) -> List[Path]:
        """Scan input directory for PDF files"""
        logger.info(f"๐Ÿ” Scanning for PDFs in {self.input_dir}")

        if not self.input_dir.exists():
            raise FileNotFoundError(f"Input directory not found: {self.input_dir}")

        pdf_files = list(self.input_dir.glob("**/*.pdf"))
        logger.info(f"โœ… Found {len(pdf_files)} PDF files")

        for pdf in pdf_files:
            logger.info(f"  ๐Ÿ“„ {pdf.name}")

        return pdf_files

    def process_pdf(self, pdf_path: Path) -> int:
        """Process a single PDF file"""
        logger.info(f"\n{'='*60}")
        logger.info(f"๐Ÿ“„ Processing: {pdf_path.name}")
        logger.info(f"{'='*60}")

        try:
            # Extract text
            text, extraction_metadata = PDFExtractor.extract_text(str(pdf_path))

            if not text or len(text) < 100:
                logger.warning(f"โš ๏ธ Extracted text too short ({len(text)} chars), skipping")
                return 0

            # Generate file hash for duplicate detection
            file_hash = hashlib.md5(text.encode()).hexdigest()

            # Chunk text
            chunks = self.chunker.chunk_text(text, pdf_path.name)

            if not chunks:
                logger.warning(f"โš ๏ธ No chunks created from {pdf_path.name}")
                return 0

            # Generate embeddings
            logger.info(f"๐Ÿงฎ Generating embeddings for {len(chunks)} chunks...")
            chunk_texts = [chunk["content"] for chunk in chunks]
            chunk_embeddings = self.embedding_model.encode(
                chunk_texts,
                show_progress_bar=True,
                batch_size=32
            )

            # Store documents and embeddings
            for i, (chunk, embedding) in enumerate(zip(chunks, chunk_embeddings)):
                self.documents.append(chunk["content"])
                self.embeddings.append(embedding)
                self.metadata.append({
                    "source": pdf_path.name,
                    "section": chunk["section"],
                    "chunk_id": i,
                    "chunk_size": chunk["size"],
                    "file_hash": file_hash,
                    "extraction_method": extraction_metadata["method"],
                    "total_pages": extraction_metadata["pages"],
                    "processed_at": datetime.now().isoformat()
                })

            logger.info(f"โœ… Processed {pdf_path.name}: {len(chunks)} chunks added")
            return len(chunks)

        except Exception as e:
            logger.error(f"โŒ Error processing {pdf_path.name}: {e}")
            return 0

    def build_faiss_index(self):
        """Build FAISS index from embeddings"""
        logger.info(f"\n{'='*60}")
        logger.info(f"๐Ÿ—๏ธ Building FAISS index...")
        logger.info(f"{'='*60}")

        if not self.embeddings:
            raise ValueError("No embeddings to index")

        # Convert to numpy array
        embeddings_array = np.array(self.embeddings).astype('float32')
        logger.info(f"๐Ÿ“Š Embeddings shape: {embeddings_array.shape}")

        # Create FAISS index (L2 distance)
        index = faiss.IndexFlatL2(self.embedding_dim)

        # Add embeddings
        index.add(embeddings_array)

        logger.info(f"โœ… FAISS index created with {index.ntotal} vectors")
        return index

    def save_vector_store(self, index):
        """Save vector store to disk"""
        logger.info(f"\n{'='*60}")
        logger.info(f"๐Ÿ’พ Saving vector store...")
        logger.info(f"{'='*60}")

        # Save FAISS index
        index_path = self.output_dir / "faiss_index.bin"
        faiss.write_index(index, str(index_path))
        logger.info(f"โœ… Saved FAISS index: {index_path}")

        # Save documents
        docs_path = self.output_dir / "documents.json"
        with open(docs_path, 'w', encoding='utf-8') as f:
            json.dump(self.documents, f, ensure_ascii=False, indent=2)
        logger.info(f"โœ… Saved documents: {docs_path}")

        # Save metadata
        metadata_path = self.output_dir / "metadata.json"
        with open(metadata_path, 'w', encoding='utf-8') as f:
            json.dump(self.metadata, f, ensure_ascii=False, indent=2)
        logger.info(f"โœ… Saved metadata: {metadata_path}")

        # Save configuration
        config = {
            "embedding_model": self.embedding_model_name,
            "embedding_dim": self.embedding_dim,
            "chunk_size": self.chunk_size,
            "chunk_overlap": self.chunk_overlap,
            "total_documents": len(self.documents),
            "total_chunks": len(self.documents),
            "build_date": datetime.now().isoformat(),
            "version": "1.0.0"
        }
        config_path = self.output_dir / "config.json"
        with open(config_path, 'w', encoding='utf-8') as f:
            json.dump(config, f, indent=2)
        logger.info(f"โœ… Saved config: {config_path}")

        # Save build log
        log_data = {
            "build_date": datetime.now().isoformat(),
            "input_dir": str(self.input_dir),
            "output_dir": str(self.output_dir),
            "total_pdfs": len(set(m["source"] for m in self.metadata)),
            "total_chunks": len(self.documents),
            "sources": list(set(m["source"] for m in self.metadata)),
            "config": config
        }
        log_path = self.output_dir / "build_log.json"
        with open(log_path, 'w', encoding='utf-8') as f:
            json.dump(log_data, f, indent=2)
        logger.info(f"โœ… Saved build log: {log_path}")

    def upload_to_hf(self, repo_id: str, token: Optional[str] = None):
        """Upload vector store to Hugging Face Hub"""
        if not HAS_HF:
            logger.warning("โš ๏ธ Hugging Face Hub not available, skipping upload")
            return

        logger.info(f"\n{'='*60}")
        logger.info(f"โ˜๏ธ Uploading to Hugging Face Hub...")
        logger.info(f"๐Ÿ“ฆ Repository: {repo_id}")
        logger.info(f"{'='*60}")

        try:
            api = HfApi(token=token)

            # Create repo if it doesn't exist
            try:
                create_repo(repo_id, repo_type="dataset", exist_ok=True, token=token)
                logger.info(f"โœ… Repository ready: {repo_id}")
            except Exception as e:
                logger.warning(f"โš ๏ธ Repo creation: {e}")

            # Upload all files
            files_to_upload = [
                "faiss_index.bin",
                "documents.json",
                "metadata.json",
                "config.json",
                "build_log.json"
            ]

            for filename in files_to_upload:
                file_path = self.output_dir / filename
                if file_path.exists():
                    logger.info(f"๐Ÿ“ค Uploading {filename}...")
                    api.upload_file(
                        path_or_fileobj=str(file_path),
                        path_in_repo=filename,
                        repo_id=repo_id,
                        repo_type="dataset",
                        token=token
                    )
                    logger.info(f"โœ… Uploaded {filename}")

            logger.info(f"๐ŸŽ‰ Upload complete! View at: https://huggingface.co/datasets/{repo_id}")

        except Exception as e:
            logger.error(f"โŒ Upload failed: {e}")
            raise

    def build(self, upload: bool = False, repo_id: Optional[str] = None, hf_token: Optional[str] = None):
        """Main build process"""
        start_time = datetime.now()
        logger.info(f"\n{'='*60}")
        logger.info(f"๐Ÿš€ STARTING VECTOR STORE BUILD")
        logger.info(f"{'='*60}\n")

        try:
            # Scan for PDFs
            pdf_files = self.scan_pdfs()

            if not pdf_files:
                raise ValueError("No PDF files found in input directory")

            # Process each PDF
            total_chunks = 0
            for pdf_path in pdf_files:
                chunks_added = self.process_pdf(pdf_path)
                total_chunks += chunks_added

            if total_chunks == 0:
                raise ValueError("No chunks created from any PDF")

            # Build FAISS index
            index = self.build_faiss_index()

            # Save to disk
            self.save_vector_store(index)

            # Upload to HF if requested
            if upload and repo_id:
                self.upload_to_hf(repo_id, hf_token)

            # Summary
            duration = (datetime.now() - start_time).total_seconds()
            logger.info(f"\n{'='*60}")
            logger.info(f"โœ… BUILD COMPLETE!")
            logger.info(f"{'='*60}")
            logger.info(f"๐Ÿ“Š Summary:")
            logger.info(f"  โ€ข PDFs processed: {len(pdf_files)}")
            logger.info(f"  โ€ข Total chunks: {total_chunks}")
            logger.info(f"  โ€ข Embedding dimension: {self.embedding_dim}")
            logger.info(f"  โ€ข Output directory: {self.output_dir}")
            logger.info(f"  โ€ข Build time: {duration:.2f} seconds")
            logger.info(f"{'='*60}\n")

            return True

        except Exception as e:
            logger.error(f"\n{'='*60}")
            logger.error(f"โŒ BUILD FAILED: {e}")
            logger.error(f"{'='*60}\n")
            raise


def main():
    parser = argparse.ArgumentParser(
        description="Build VedaMD Vector Store from PDF documents",
        formatter_class=argparse.RawDescriptionHelpFormatter,
        epilog="""
Examples:
  # Build locally
  python scripts/build_vector_store.py --input-dir ./Obs --output-dir ./data/vector_store

  # Build and upload to HF
  python scripts/build_vector_store.py \\
    --input-dir ./Obs \\
    --output-dir ./data/vector_store \\
    --repo-id sniro23/VedaMD-Vector-Store \\
    --upload
        """
    )

    parser.add_argument(
        "--input-dir",
        type=str,
        required=True,
        help="Directory containing PDF files"
    )

    parser.add_argument(
        "--output-dir",
        type=str,
        default="./data/vector_store",
        help="Output directory for vector store files"
    )

    parser.add_argument(
        "--embedding-model",
        type=str,
        default="sentence-transformers/all-MiniLM-L6-v2",
        help="Sentence transformer model for embeddings"
    )

    parser.add_argument(
        "--chunk-size",
        type=int,
        default=1000,
        help="Maximum chunk size in characters"
    )

    parser.add_argument(
        "--chunk-overlap",
        type=int,
        default=100,
        help="Overlap between chunks in characters"
    )

    parser.add_argument(
        "--upload",
        action="store_true",
        help="Upload to Hugging Face Hub after building"
    )

    parser.add_argument(
        "--repo-id",
        type=str,
        help="Hugging Face repository ID (e.g., username/repo-name)"
    )

    parser.add_argument(
        "--hf-token",
        type=str,
        help="Hugging Face API token (or set HF_TOKEN env var)"
    )

    args = parser.parse_args()

    # Get HF token from env if not provided
    hf_token = args.hf_token or os.getenv("HF_TOKEN")

    # Validate upload arguments
    if args.upload and not args.repo_id:
        parser.error("--repo-id is required when --upload is specified")

    # Build vector store
    builder = VectorStoreBuilder(
        input_dir=args.input_dir,
        output_dir=args.output_dir,
        embedding_model=args.embedding_model,
        chunk_size=args.chunk_size,
        chunk_overlap=args.chunk_overlap
    )

    builder.build(
        upload=args.upload,
        repo_id=args.repo_id,
        hf_token=hf_token
    )


if __name__ == "__main__":
    main()