Spaces:
Sleeping
Sleeping
File size: 19,126 Bytes
01f0120 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
#!/usr/bin/env python3
"""
Medical Response Verification Layer
VedaMD Medical RAG - Phase 2: Task 2.2
This module provides comprehensive medical response verification to ensure:
1. 100% source traceability for all medical claims
2. Context adherence validation against provided Sri Lankan guidelines
3. Prevention of medical hallucination and external knowledge injection
4. Regulatory compliance for medical device applications
CRITICAL SAFETY PROTOCOL:
- Every medical fact MUST be traceable to provided source documents
- No medical information allowed without explicit context support
- Strict verification of dosages, procedures, and protocols
- Comprehensive medical claim validation system
"""
import re
import logging
from typing import List, Dict, Set, Tuple, Optional, Any, Union
from dataclasses import dataclass
from enum import Enum
import json
from pathlib import Path
class VerificationStatus(Enum):
"""Verification status for medical claims"""
VERIFIED = "verified"
NOT_FOUND = "not_found"
PARTIAL_MATCH = "partial_match"
CONTRADICTED = "contradicted"
INSUFFICIENT_CONTEXT = "insufficient_context"
class MedicalClaimType(Enum):
"""Types of medical claims to verify"""
DOSAGE = "dosage"
MEDICATION = "medication"
PROCEDURE = "procedure"
CONDITION = "condition"
VITAL_SIGN = "vital_sign"
CONTRAINDICATION = "contraindication"
INDICATION = "indication"
PROTOCOL = "protocol"
EVIDENCE_LEVEL = "evidence_level"
@dataclass
class MedicalClaim:
"""Individual medical claim extracted from LLM response"""
text: str
claim_type: MedicalClaimType
context: str
confidence: float
citation_required: bool = True
extracted_values: Dict[str, str] = None
@dataclass
class VerificationResult:
"""Result of medical claim verification"""
claim: MedicalClaim
status: VerificationStatus
supporting_sources: List[str]
confidence_score: float
verification_details: str
suggested_correction: Optional[str] = None
@dataclass
class MedicalResponseVerification:
"""Complete medical response verification result"""
original_response: str
total_claims: int
verified_claims: int
failed_verifications: List[VerificationResult]
verification_score: float
is_safe_for_medical_use: bool
detailed_results: List[VerificationResult]
safety_warnings: List[str]
class MedicalResponseVerifier:
"""
Medical response verification system for context adherence validation
"""
def __init__(self):
self.setup_logging()
self.medical_claim_patterns = self._initialize_medical_patterns()
def setup_logging(self):
"""Setup logging for medical response verification"""
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
self.logger = logging.getLogger(__name__)
def _initialize_medical_patterns(self) -> Dict[MedicalClaimType, List[str]]:
"""Initialize patterns for extracting medical claims from responses"""
return {
MedicalClaimType.DOSAGE: [
r'(?:administer|give|prescribe|dose of?)\s+(\d+(?:\.\d+)?)\s*(mg|g|ml|units?|tablets?)',
r'(\d+(?:\.\d+)?)\s*(mg|g|ml|units?)\s+(?:of |every |per )',
r'(?:low|moderate|high|maximum|minimum)\s+dose'
],
MedicalClaimType.MEDICATION: [
r'\b(magnesium sulfate|MgSO4|oxytocin|methyldopa|nifedipine|labetalol|hydralazine)\b',
r'\b(ampicillin|gentamicin|ceftriaxone|azithromycin|doxycycline)\b',
r'\b(insulin|metformin|glibenclamide|aspirin|atorvastatin)\b'
],
MedicalClaimType.PROCEDURE: [
r'\b(cesarean section|C-section|vaginal delivery|assisted delivery)\b',
r'\b(IV access|urinary catheter|nasogastric tube|blood transfusion)\b',
r'\b(blood pressure monitoring|fetal monitoring|CTG)\b'
],
MedicalClaimType.CONDITION: [
r'\b(preeclampsia|eclampsia|HELLP syndrome|gestational hypertension)\b',
r'\b(postpartum hemorrhage|PPH|retained placenta|uterine atony)\b',
r'\b(puerperal sepsis|endometritis|wound infection)\b'
],
MedicalClaimType.VITAL_SIGN: [
r'blood pressure.*?(\d+/\d+)\s*mmHg',
r'BP.*?([<>β€β₯]?\s*\d+/\d+)\s*mmHg',
r'heart rate.*?(\d+)\s*bpm'
],
MedicalClaimType.CONTRAINDICATION: [
r'contraindicated|avoid|do not use|should not be given',
r'not recommended|prohibited|forbidden'
],
MedicalClaimType.INDICATION: [
r'indicated for|recommended for|used to treat',
r'first-line treatment|treatment of choice'
],
MedicalClaimType.PROTOCOL: [
r'according to protocol|standard protocol|clinical protocol',
r'guideline recommends|evidence-based approach'
]
}
def extract_medical_claims(self, response: str) -> List[MedicalClaim]:
"""
Extract all medical claims from LLM response that need verification
"""
claims = []
sentences = re.split(r'[.!?]+', response)
for sentence_idx, sentence in enumerate(sentences):
sentence = sentence.strip()
if not sentence:
continue
for claim_type, patterns in self.medical_claim_patterns.items():
for pattern in patterns:
matches = re.finditer(pattern, sentence, re.IGNORECASE)
for match in matches:
# Extract specific values if present
extracted_values = {}
if match.groups():
for i, group in enumerate(match.groups()):
extracted_values[f'value_{i}'] = group
claim = MedicalClaim(
text=match.group(),
claim_type=claim_type,
context=sentence,
confidence=self._calculate_claim_confidence(match.group(), sentence),
citation_required=self._requires_citation(claim_type),
extracted_values=extracted_values
)
claims.append(claim)
# Remove duplicate claims
unique_claims = []
seen_claims = set()
for claim in claims:
claim_key = (claim.text.lower(), claim.claim_type)
if claim_key not in seen_claims:
unique_claims.append(claim)
seen_claims.add(claim_key)
self.logger.info(f"Extracted {len(unique_claims)} medical claims for verification")
return unique_claims
def verify_claim_against_context(self, claim: MedicalClaim,
provided_context: List[str]) -> VerificationResult:
"""
Verify a medical claim against provided source documents
"""
supporting_sources = []
verification_details = []
best_match_score = 0.0
# Check each context document for supporting evidence
for source_idx, context_doc in enumerate(provided_context):
context_lower = context_doc.lower()
claim_text_lower = claim.text.lower()
# Direct text match
if claim_text_lower in context_lower:
supporting_sources.append(f"Document_{source_idx + 1}")
verification_details.append(f"Exact match found in source document")
best_match_score = max(best_match_score, 1.0)
continue
# Semantic verification for different claim types
if claim.claim_type == MedicalClaimType.DOSAGE:
score = self._verify_dosage_claim(claim, context_doc)
if score > 0.7:
supporting_sources.append(f"Document_{source_idx + 1}")
verification_details.append(f"Dosage information supported (confidence: {score:.2f})")
best_match_score = max(best_match_score, score)
elif claim.claim_type == MedicalClaimType.MEDICATION:
score = self._verify_medication_claim(claim, context_doc)
if score > 0.8:
supporting_sources.append(f"Document_{source_idx + 1}")
verification_details.append(f"Medication information supported (confidence: {score:.2f})")
best_match_score = max(best_match_score, score)
elif claim.claim_type == MedicalClaimType.PROCEDURE:
score = self._verify_procedure_claim(claim, context_doc)
if score > 0.7:
supporting_sources.append(f"Document_{source_idx + 1}")
verification_details.append(f"Procedure information supported (confidence: {score:.2f})")
best_match_score = max(best_match_score, score)
# Determine verification status
if best_match_score >= 0.9:
status = VerificationStatus.VERIFIED
elif best_match_score >= 0.6:
status = VerificationStatus.PARTIAL_MATCH
elif len(supporting_sources) == 0:
status = VerificationStatus.NOT_FOUND
else:
status = VerificationStatus.INSUFFICIENT_CONTEXT
return VerificationResult(
claim=claim,
status=status,
supporting_sources=supporting_sources,
confidence_score=best_match_score,
verification_details="; ".join(verification_details) if verification_details else "No supporting evidence found",
suggested_correction=self._generate_correction_suggestion(claim, status)
)
def _verify_dosage_claim(self, claim: MedicalClaim, context: str) -> float:
"""Verify dosage claims against context"""
confidence = 0.0
if claim.extracted_values:
for key, value in claim.extracted_values.items():
if re.search(rf'\b{re.escape(value)}\b', context, re.IGNORECASE):
confidence += 0.4
# Check for dosage-related keywords in context
dosage_keywords = ['dose', 'administer', 'give', 'mg', 'g', 'units']
for keyword in dosage_keywords:
if keyword in context.lower():
confidence += 0.1
return min(confidence, 1.0)
def _verify_medication_claim(self, claim: MedicalClaim, context: str) -> float:
"""Verify medication claims against context"""
medication_name = claim.text.lower()
context_lower = context.lower()
# Check for exact medication name
if medication_name in context_lower:
return 1.0
# Check for common medication aliases
medication_aliases = {
'mgso4': 'magnesium sulfate',
'magnesium sulfate': 'mgso4',
'bp': 'blood pressure'
}
for alias, full_name in medication_aliases.items():
if medication_name == alias and full_name in context_lower:
return 0.9
elif medication_name == full_name and alias in context_lower:
return 0.9
return 0.0
def _verify_procedure_claim(self, claim: MedicalClaim, context: str) -> float:
"""Verify procedure claims against context"""
procedure_name = claim.text.lower()
context_lower = context.lower()
if procedure_name in context_lower:
return 1.0
# Check for procedure synonyms
procedure_synonyms = {
'c-section': 'cesarean section',
'cesarean section': 'c-section',
'iv access': 'intravenous access'
}
for synonym, standard_name in procedure_synonyms.items():
if procedure_name == synonym and standard_name in context_lower:
return 0.9
return 0.0
def verify_medical_response(self, response: str,
provided_context: List[str]) -> MedicalResponseVerification:
"""
Comprehensive verification of medical response against provided context
"""
self.logger.info("π Starting comprehensive medical response verification")
# Extract all medical claims from response
medical_claims = self.extract_medical_claims(response)
# Verify each claim against provided context
verification_results = []
verified_count = 0
failed_verifications = []
safety_warnings = []
for claim in medical_claims:
result = self.verify_claim_against_context(claim, provided_context)
verification_results.append(result)
if result.status == VerificationStatus.VERIFIED:
verified_count += 1
else:
failed_verifications.append(result)
# Generate safety warnings for critical failures
if claim.claim_type in [MedicalClaimType.DOSAGE, MedicalClaimType.MEDICATION,
MedicalClaimType.CONTRAINDICATION]:
safety_warnings.append(f"CRITICAL: {claim.claim_type.value} claim not verified - '{claim.text}'")
# Calculate overall verification score
total_claims = len(medical_claims)
verification_score = (verified_count / total_claims) if total_claims > 0 else 1.0
# Determine if response is safe for medical use
is_safe = verification_score >= 0.9 and len(safety_warnings) == 0
verification_result = MedicalResponseVerification(
original_response=response,
total_claims=total_claims,
verified_claims=verified_count,
failed_verifications=failed_verifications,
verification_score=verification_score,
is_safe_for_medical_use=is_safe,
detailed_results=verification_results,
safety_warnings=safety_warnings
)
self.logger.info(f"β
Medical verification complete: {verified_count}/{total_claims} claims verified "
f"(Score: {verification_score:.1%}, Safe: {is_safe})")
return verification_result
def _calculate_claim_confidence(self, claim_text: str, context: str) -> float:
"""Calculate confidence score for extracted medical claim"""
confidence = 0.5
# Higher confidence for claims with specific numerical values
if re.search(r'\d+', claim_text):
confidence += 0.2
# Higher confidence for claims in clinical context
clinical_indicators = ['patient', 'treatment', 'administer', 'protocol', 'guideline']
if any(indicator in context.lower() for indicator in clinical_indicators):
confidence += 0.2
return min(confidence, 1.0)
def _requires_citation(self, claim_type: MedicalClaimType) -> bool:
"""Determine if claim type requires citation"""
critical_types = [
MedicalClaimType.DOSAGE,
MedicalClaimType.MEDICATION,
MedicalClaimType.CONTRAINDICATION,
MedicalClaimType.PROTOCOL
]
return claim_type in critical_types
def _generate_correction_suggestion(self, claim: MedicalClaim,
status: VerificationStatus) -> Optional[str]:
"""Generate correction suggestions for unverified claims"""
if status == VerificationStatus.NOT_FOUND:
return f"Remove claim '{claim.text}' - not supported by provided guidelines"
elif status == VerificationStatus.INSUFFICIENT_CONTEXT:
return f"Add qualification: 'Based on available guidelines, {claim.text.lower()}' or remove if not essential"
return None
def test_medical_response_verifier():
"""Test the medical response verification system"""
print("π§ͺ Testing Medical Response Verification System")
# Test medical response from LLM
test_response = """
For preeclampsia management, administer magnesium sulfate 4g IV bolus for seizure prophylaxis.
Control blood pressure with methyldopa 250mg orally every 8 hours.
Monitor vital signs including blood pressure β₯140/90 mmHg.
This medication is contraindicated in patients with myasthenia gravis.
Alternative treatment includes nifedipine 10mg sublingually, though this is not mentioned in current guidelines.
"""
# Provided context from Sri Lankan guidelines
test_context = [
"""
Preeclampsia Management Protocol:
- Administer magnesium sulfate (MgSO4) 4g IV bolus for seizure prophylaxis
- Control BP with methyldopa 250mg orally every 8 hours
- Monitor blood pressure β₯140/90 mmHg
- Contraindicated: magnesium sulfate is contraindicated in myasthenia gravis
""",
"""
Additional clinical guidelines for severe preeclampsia:
- Immediate delivery considerations for severe cases
- Laboratory monitoring requirements
- Multidisciplinary team involvement
"""
]
verifier = MedicalResponseVerifier()
# Perform comprehensive verification
verification = verifier.verify_medical_response(test_response, test_context)
print(f"\nπ Verification Results:")
print(f" Total Claims: {verification.total_claims}")
print(f" Verified Claims: {verification.verified_claims}")
print(f" Verification Score: {verification.verification_score:.1%}")
print(f" Safe for Medical Use: {verification.is_safe_for_medical_use}")
print(f"\nπ Detailed Results:")
for result in verification.detailed_results:
status_emoji = "β
" if result.status == VerificationStatus.VERIFIED else "β"
print(f" {status_emoji} {result.claim.text} ({result.claim.claim_type.value})")
print(f" Status: {result.status.value} | Confidence: {result.confidence_score:.2f}")
if result.verification_details:
print(f" Details: {result.verification_details}")
if verification.safety_warnings:
print(f"\nβ οΈ Safety Warnings:")
for warning in verification.safety_warnings:
print(f" - {warning}")
print(f"\nβ
Medical Response Verification Test Completed")
if __name__ == "__main__":
test_medical_response_verifier() |