Spaces:
Sleeping
Sleeping
File size: 34,177 Bytes
fa96cf5 b906dc7 fa96cf5 b906dc7 fa96cf5 c2929af b906dc7 ab15ef5 fa96cf5 b906dc7 fa96cf5 b906dc7 fa96cf5 288d9b6 fa96cf5 68f254f 288d9b6 fa96cf5 288d9b6 fd96ddd 288d9b6 fa96cf5 b906dc7 fa96cf5 66947ed 68f254f b906dc7 68f254f b906dc7 68f254f fa96cf5 66947ed 68f254f 66947ed b906dc7 66947ed 68f254f 66947ed c6beb41 66947ed fa96cf5 c6beb41 66947ed b906dc7 66947ed b906dc7 66947ed b906dc7 66947ed b906dc7 fa96cf5 b906dc7 fa96cf5 288d9b6 fa96cf5 68f254f fa96cf5 b906dc7 68f254f b906dc7 68f254f b906dc7 fa96cf5 b906dc7 68f254f fa96cf5 b906dc7 66947ed b906dc7 68f254f b906dc7 66947ed b906dc7 66947ed 68f254f b906dc7 68f254f b906dc7 66947ed b906dc7 66947ed 68f254f fa96cf5 b906dc7 fa96cf5 b906dc7 fa96cf5 b906dc7 fa96cf5 b906dc7 66947ed fa96cf5 66947ed b906dc7 fa96cf5 66947ed 68f254f 66947ed 68f254f 66947ed 68f254f 66947ed b906dc7 66947ed 68f254f b906dc7 66947ed b906dc7 66947ed b906dc7 c2929af 68f254f b906dc7 66947ed b906dc7 66947ed b906dc7 66947ed 68f254f b906dc7 66947ed 68f254f 66947ed b906dc7 68f254f fa96cf5 b906dc7 fa96cf5 b906dc7 fa96cf5 b906dc7 66947ed b906dc7 66947ed b906dc7 66947ed fa96cf5 66947ed b906dc7 66947ed b906dc7 66947ed b906dc7 66947ed b906dc7 fa96cf5 b906dc7 fa96cf5 66947ed fa96cf5 b906dc7 66947ed b906dc7 66947ed b906dc7 66947ed b906dc7 66947ed b906dc7 68f254f 66947ed b906dc7 fa96cf5 b906dc7 fa96cf5 b906dc7 66947ed b906dc7 66947ed b906dc7 66947ed b906dc7 fa96cf5 ffbb796 2bcad7e ffbb796 fa7d05f ffbb796 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 |
"""
EEG Motor Imagery Music Composer - Clean Transition Version
=========================================================
This version implements a clear separation between the building phase (layering sounds) and the DJ phase (effect control),
with seamless playback of all layered sounds throughout both phases.
"""
# Set matplotlib backend to non-GUI for server/web use
import matplotlib
matplotlib.use('Agg') # Set backend BEFORE importing pyplot
import matplotlib.pyplot as plt
import os
import gradio as gr
import numpy as np
from typing import Dict
from sound_control import SoundManager
from data_processor import EEGDataProcessor
from classifier import MotorImageryClassifier
from config import DEMO_DATA_PATHS, CONFIDENCE_THRESHOLD
# --- Initialization ---
app_state = {
'is_running': False,
'demo_data': None,
'demo_labels': None,
'composition_active': False,
'auto_mode': False,
'ch_names': None
}
sound_control= None
data_processor = None
classifier = None
def lazy_init():
global sound_control, data_processor, classifier
if sound_control is None:
sound_control = SoundManager()
if data_processor is None:
data_processor = EEGDataProcessor()
if classifier is None:
classifier = MotorImageryClassifier()
# Load demo data and model if not already loaded
if app_state['demo_data'] is None or app_state['demo_labels'] is None or app_state['ch_names'] is None:
existing_files = [f for f in DEMO_DATA_PATHS if os.path.exists(f)]
if existing_files:
app_state['demo_data'], app_state['demo_labels'], app_state['ch_names'] = data_processor.process_files(existing_files)
else:
app_state['demo_data'], app_state['demo_labels'], app_state['ch_names'] = None, None, None
if app_state['demo_data'] is not None and classifier is not None and not hasattr(classifier, '_model_loaded'):
classifier.load_model(n_chans=app_state['demo_data'].shape[1], n_times=app_state['demo_data'].shape[2])
classifier._model_loaded = True
# --- Helper Functions ---
def get_movement_sounds() -> Dict[str, str]:
"""Get the current sound files for each movement."""
sounds = {}
# Add a static cache for audio file paths per movement and effect state
if not hasattr(get_movement_sounds, 'audio_cache'):
get_movement_sounds.audio_cache = {m: {False: None, True: None} for m in ['left_hand', 'right_hand', 'left_leg', 'right_leg']}
get_movement_sounds.last_effect_state = {m: None for m in ['left_hand', 'right_hand', 'left_leg', 'right_leg']}
# Add a static counter to track how many times each movement's audio is played
if not hasattr(get_movement_sounds, 'play_counter'):
get_movement_sounds.play_counter = {m: 0 for m in ['left_hand', 'right_hand', 'left_leg', 'right_leg']}
get_movement_sounds.total_calls = 0
from sound_control import AudioEffectsProcessor
import tempfile
import soundfile as sf
# If in DJ mode, use effect-processed file if effect is ON
dj_mode = getattr(sound_control, 'current_phase', None) == 'dj_effects'
for movement, sound_file in sound_control.current_sound_mapping.items():
if movement in ['left_hand', 'right_hand', 'left_leg', 'right_leg']:
if sound_file is not None:
sound_path = sound_control.sound_dir / sound_file
if sound_path.exists():
# Sticky effect for all movements: if effect was ON, keep returning processed audio until next ON
effect_on = dj_mode and sound_control.active_effects.get(movement, False)
# If effect just turned ON, update sticky state
if effect_on:
get_movement_sounds.last_effect_state[movement] = True
# If effect is OFF, but sticky is set, keep using processed audio
elif get_movement_sounds.last_effect_state[movement]:
effect_on = True
else:
effect_on = False
# Check cache for this movement/effect state
cached_path = get_movement_sounds.audio_cache[movement][effect_on]
# Only regenerate if cache is empty or effect state just changed
if cached_path is not None and get_movement_sounds.last_effect_state[movement] == effect_on:
sounds[movement] = cached_path
else:
# Load audio
data, sr = sf.read(str(sound_path))
if len(data.shape) > 1:
data = np.mean(data, axis=1)
# Fade-in: apply to all audio on restart (0.5s fade for more gradual effect)
fade_duration = 10 # seconds
fade_samples = int(fade_duration * sr)
if fade_samples > 0 and fade_samples < len(data):
fade_curve = np.linspace(0, 1, fade_samples)
data[:fade_samples] = data[:fade_samples] * fade_curve
if effect_on:
# Apply effect
processed = AudioEffectsProcessor.process_layer_with_effects(
data, sr, movement, sound_control.active_effects
)
# Save to temp file (persistent for this effect state)
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=f'_{movement}_effect.wav')
sf.write(tmp.name, processed, sr)
get_movement_sounds.audio_cache[movement][True] = tmp.name
sounds[movement] = tmp.name
else:
get_movement_sounds.audio_cache[movement][False] = str(sound_path.resolve())
sounds[movement] = str(sound_path.resolve())
get_movement_sounds.last_effect_state[movement] = effect_on
get_movement_sounds.play_counter[movement] += 1
get_movement_sounds.total_calls += 1
return sounds
def create_eeg_plot(eeg_data: np.ndarray, target_movement: str, predicted_name: str, confidence: float, sound_added: bool, ch_names=None) -> plt.Figure:
'''Create a plot of EEG data with annotations. Plots C3 and C4 channels by name.'''
if ch_names is None:
ch_names = ['C3', 'C4']
# Find indices for C3 and C4
idx_c3 = ch_names.index('C3') if 'C3' in ch_names else 0
idx_c4 = ch_names.index('C4') if 'C4' in ch_names else 1
fig, axes = plt.subplots(1, 2, figsize=(10, 4))
axes = axes.flatten()
time_points = np.arange(eeg_data.shape[1]) / 200
for i, idx in enumerate([idx_c3, idx_c4]):
color = 'green' if sound_added else 'blue'
axes[i].plot(time_points, eeg_data[idx], color=color, linewidth=1)
axes[i].set_title(f'{ch_names[idx] if idx < len(ch_names) else f"Channel {idx+1}"}')
axes[i].set_xlabel('Time (s)')
axes[i].set_ylabel('Amplitude (Β΅V)')
axes[i].grid(True, alpha=0.3)
title = f"Target: {target_movement.replace('_', ' ').title()} | Predicted: {predicted_name.replace('_', ' ').title()} ({confidence:.2f})"
fig.suptitle(title, fontsize=12, fontweight='bold')
fig.tight_layout()
plt.close(fig)
return fig
def format_composition_summary(composition_info: Dict) -> str:
'''Format the composition summary for display.
'''
if not composition_info.get('layers_by_cycle'):
return "No composition layers yet"
summary = []
for cycle, layers in composition_info['layers_by_cycle'].items():
summary.append(f"Cycle {cycle + 1}: {len(layers)} layers")
for layer in layers:
movement = layer.get('movement', 'unknown')
confidence = layer.get('confidence', 0)
summary.append(f" β’ {movement.replace('_', ' ').title()} ({confidence:.2f})")
# DJ Effects Status removed from status tab as requested
return "\n".join(summary) if summary else "No composition layers"
# --- Main Logic ---
def start_composition():
'''
Start the composition process.
'''
global app_state
lazy_init()
if not app_state['composition_active']:
app_state['composition_active'] = True
sound_control.start_new_cycle()
if app_state['demo_data'] is None:
return "β No data", "β No data", "β No data", None, None, None, None, None, None, "No EEG data available"
# Force first trial to always be left_hand/instrumental
if len(sound_control.movements_completed) == 0:
next_movement = 'left_hand'
left_hand_label = [k for k, v in classifier.class_names.items() if v == 'left_hand'][0]
import numpy as np
matching_indices = np.where(app_state['demo_labels'] == left_hand_label)[0]
chosen_idx = np.random.choice(matching_indices)
epoch_data = app_state['demo_data'][chosen_idx]
true_label = left_hand_label
true_label_name = 'left_hand'
else:
epoch_data, true_label = data_processor.simulate_real_time_data(app_state['demo_data'], app_state['demo_labels'], mode="class_balanced")
true_label_name = classifier.class_names[true_label]
next_movement = sound_control.get_current_target_movement()
if next_movement == "cycle_complete":
return continue_dj_phase()
predicted_class, confidence, probabilities = classifier.predict(epoch_data)
predicted_name = classifier.class_names[predicted_class]
# Only add sound if confidence > threshold, predicted == true label, and true label matches the prompt
if confidence > CONFIDENCE_THRESHOLD and predicted_name == true_label_name:
result = sound_control.process_classification(predicted_name, confidence, CONFIDENCE_THRESHOLD, force_add=True)
else:
result = {'sound_added': False}
fig = create_eeg_plot(epoch_data, true_label_name, predicted_name, confidence, result['sound_added'], app_state.get('ch_names'))
# Only play completed movement sounds (layered)
sounds = get_movement_sounds()
completed_movements = sound_control.movements_completed
# Assign audio paths only for completed movements
left_hand_audio = sounds.get('left_hand') if 'left_hand' in completed_movements else None
right_hand_audio = sounds.get('right_hand') if 'right_hand' in completed_movements else None
left_leg_audio = sounds.get('left_leg') if 'left_leg' in completed_movements else None
right_leg_audio = sounds.get('right_leg') if 'right_leg' in completed_movements else None
# 2. Movement Commands: show mapping for all movements
movement_emojis = {
"left_hand": "π«²",
"right_hand": "π«±",
"left_leg": "π¦΅",
"right_leg": "π¦΅",
}
movement_command_lines = []
# Show 'Now Playing' for all completed movements (layers that are currently playing)
completed_movements = sound_control.movements_completed
for movement in ["left_hand", "right_hand", "left_leg", "right_leg"]:
sound_file = sound_control.current_sound_mapping.get(movement, "")
instrument_type = ""
for key in ["bass", "drums", "instruments", "vocals"]:
if key in sound_file.lower():
instrument_type = key if key != "instruments" else "instrument"
break
pretty_movement = movement.replace("_", " ").title()
# Always use 'Instruments' (plural) for the left hand stem
if movement == "left_hand" and instrument_type.lower() == "instrument":
pretty_instrument = "Instruments"
else:
pretty_instrument = instrument_type.capitalize() if instrument_type else "--"
emoji = movement_emojis.get(movement, "")
# Add 'Now Playing' indicator for all completed movements
if movement in completed_movements:
movement_command_lines.append(f"{emoji} {pretty_movement}: {pretty_instrument} βΆοΈ Now Playing")
else:
movement_command_lines.append(f"{emoji} {pretty_movement}: {pretty_instrument}")
movement_command_text = "πΌ Composition Mode - Movement to Stems Mapping\n" + "\n".join(movement_command_lines)
# 3. Next Trial: always prompt user
next_trial_text = "Imagine next movement"
composition_info = sound_control.get_composition_info()
status_text = format_composition_summary(composition_info)
return (
movement_command_text,
next_trial_text,
fig,
left_hand_audio,
right_hand_audio,
left_leg_audio,
right_leg_audio,
status_text
)
def continue_dj_phase():
''' Continue in DJ phase, applying effects and always playing all layered sounds.
'''
global app_state
if not app_state['composition_active']:
return "β Not active", "β Not active", "β Not active", None, None, None, None, None, None, "Click 'Start Composing' first"
if app_state['demo_data'] is None:
return "β No data", "β No data", "β No data", None, None, None, None, None, None, "No EEG data available"
# DJ phase: enforce strict DJ effect order
epoch_data, true_label = data_processor.simulate_real_time_data(app_state['demo_data'], app_state['demo_labels'], mode="class_balanced")
predicted_class, confidence, probabilities = classifier.predict(epoch_data)
predicted_name = classifier.class_names[predicted_class]
# Strict DJ order: right_hand, right_leg, left_leg, left_hand
if not hasattr(continue_dj_phase, 'dj_order'):
continue_dj_phase.dj_order = ["right_hand", "right_leg", "left_leg", "left_hand"]
continue_dj_phase.dj_index = 0
# Find the next movement in the DJ order that hasn't been toggled yet (using effect counters)
while continue_dj_phase.dj_index < 4:
next_movement = continue_dj_phase.dj_order[continue_dj_phase.dj_index]
# Only proceed if the predicted movement matches the next in order
if predicted_name == next_movement:
break
else:
# Ignore this prediction, do not apply effect
next_trial_text = "Imagine next movement"
# UI update: show which movement is expected
# Always play all completed movement sounds (layered)
sounds = get_movement_sounds()
completed_movements = sound_control.movements_completed
left_hand_audio = sounds.get('left_hand') if 'left_hand' in completed_movements else None
right_hand_audio = sounds.get('right_hand') if 'right_hand' in completed_movements else None
left_leg_audio = sounds.get('left_leg') if 'left_leg' in completed_movements else None
right_leg_audio = sounds.get('right_leg') if 'right_leg' in completed_movements else None
movement_map = {
"left_hand": {"effect": "Fade In/Out", "instrument": "Instruments"},
"right_hand": {"effect": "Low Pass", "instrument": "Bass"},
"left_leg": {"effect": "Compressor", "instrument": "Drums"},
"right_leg": {"effect": "Echo", "instrument": "Vocals"},
}
emoji_map = {"left_hand": "π«²", "right_hand": "π«±", "left_leg": "π¦΅", "right_leg": "π¦΅"}
movement_command_lines = []
for m in ["left_hand", "right_hand", "left_leg", "right_leg"]:
status = "ON" if sound_control.active_effects.get(m, False) else "off"
movement_command_lines.append(f"{emoji_map[m]} {m.replace('_', ' ').title()}: {movement_map[m]['effect']} [{'ON' if status == 'ON' else 'off'}] β {movement_map[m]['instrument']}")
target_text = "π§ DJ Mode - Movement to Effect Mapping\n" + "\n".join(movement_command_lines)
composition_info = sound_control.get_composition_info()
status_text = format_composition_summary(composition_info)
fig = create_eeg_plot(epoch_data, classifier.class_names[true_label], predicted_name, confidence, False, app_state.get('ch_names'))
return (
target_text, # Movement Commands (textbox)
next_trial_text, # Next Trial (textbox)
fig, # EEG Plot (plot)
left_hand_audio, # Left Hand (audio)
right_hand_audio, # Right Hand (audio)
left_leg_audio, # Left Leg (audio)
right_leg_audio, # Right Leg (audio)
status_text, # Composition Status (textbox)
gr.update(), # Timer (update object)
gr.update() # Continue DJ Button (update object)
)
# If correct movement, apply effect and advance order
effect_applied = False
if confidence > CONFIDENCE_THRESHOLD and predicted_name == continue_dj_phase.dj_order[continue_dj_phase.dj_index]:
result = sound_control.toggle_dj_effect(predicted_name, brief=True, duration=1.0)
effect_applied = result.get("effect_applied", False)
continue_dj_phase.dj_index += 1
else:
result = None
fig = create_eeg_plot(epoch_data, classifier.class_names[true_label], predicted_name, confidence, effect_applied, app_state.get('ch_names'))
# Always play all completed movement sounds (layered)
sounds = get_movement_sounds()
completed_movements = sound_control.movements_completed
left_hand_audio = sounds.get('left_hand') if 'left_hand' in completed_movements else None
right_hand_audio = sounds.get('right_hand') if 'right_hand' in completed_movements else None
left_leg_audio = sounds.get('left_leg') if 'left_leg' in completed_movements else None
right_leg_audio = sounds.get('right_leg') if 'right_leg' in completed_movements else None
# Show DJ effect mapping for each movement with ON/OFF status and correct instrument mapping
movement_map = {
"left_hand": {"effect": "Fade In/Out", "instrument": "Instruments"},
"right_hand": {"effect": "Low Pass", "instrument": "Bass"},
"left_leg": {"effect": "Compressor", "instrument": "Drums"},
"right_leg": {"effect": "Echo", "instrument": "Vocals"},
}
emoji_map = {"left_hand": "π«²", "right_hand": "π«±", "left_leg": "π¦΅", "right_leg": "π¦΅"}
# Get effect ON/OFF status from sound_control.active_effects
movement_command_lines = []
for m in ["left_hand", "right_hand", "left_leg", "right_leg"]:
# Show [ON] only if effect is currently active (True), otherwise [off]
status = "ON" if sound_control.active_effects.get(m, False) else "off"
movement_command_lines.append(f"{emoji_map[m]} {m.replace('_', ' ').title()}: {movement_map[m]['effect']} [{'ON' if status == 'ON' else 'off'}] β {movement_map[m]['instrument']}")
target_text = "π§ DJ Mode - Movement to Effect Mapping\n" + "\n".join(movement_command_lines)
# In DJ mode, Next Trial should only show the prompt, not the predicted/target movement
predicted_text = "Imagine next movement"
composition_info = sound_control.get_composition_info()
status_text = format_composition_summary(composition_info)
# Ensure exactly 10 outputs: [textbox, textbox, plot, audio, audio, audio, audio, textbox, timer, button]
# Use fig for the plot, and fill all outputs with correct types
return (
target_text, # Movement Commands (textbox)
predicted_text, # Next Trial (textbox)
fig, # EEG Plot (plot)
left_hand_audio, # Left Hand (audio)
right_hand_audio, # Right Hand (audio)
left_leg_audio, # Left Leg (audio)
right_leg_audio, # Right Leg (audio)
status_text, # Composition Status (textbox)
gr.update(), # Timer (update object)
gr.update() # Continue DJ Button (update object)
)
# --- Gradio UI ---
def create_interface():
''' Create the Gradio interface.
'''
with gr.Blocks(title="EEG Motor Imagery Music Composer", theme=gr.themes.Citrus()) as demo:
with gr.Tabs():
with gr.TabItem("π΅ Automatic Music Composer"):
gr.Markdown("# π§ NeuroMusic Studio: An accessible, easy to use motor rehabilitation device.")
gr.Markdown("""
**How it works:**
1. **Compose:** Imagine moving your left hand, right hand, left leg, or right leg to add musical layers. Each correct, high-confidence prediction adds a sound. Just follow the prompts.
2. **DJ Mode:** After all four layers are added, you can apply effects and remix your composition using new brain commands.
> **Tip:** In DJ mode, each effect is triggered only every 4th time you repeat a movement, to keep playback smooth.
Commands and controls update as you progress. Just follow the on-screen instructions!
""")
with gr.Row():
with gr.Column(scale=2):
start_btn = gr.Button("π΅ Start Composing", variant="primary", size="lg")
stop_btn = gr.Button("π Stop", variant="stop", size="md")
continue_btn = gr.Button("βοΈ Continue DJ Phase", variant="primary", size="lg", visible=False)
timer = gr.Timer(value=1.0, active=False) # 4 second intervals
predicted_display = gr.Textbox(label="π§ Movement Commands", interactive=False, value="--", lines=4)
timer_display = gr.Textbox(label="β±οΈ Next Trial", interactive=False, value="--")
eeg_plot = gr.Plot(label="EEG Data Visualization")
with gr.Column(scale=1):
left_hand_sound = gr.Audio(label="π«² Left Hand", interactive=False, autoplay=True, visible=True)
right_hand_sound = gr.Audio(label="π«± Right Hand", interactive=False, autoplay=True, visible=True)
left_leg_sound = gr.Audio(label="𦡠Left Leg", interactive=False, autoplay=True, visible=True)
right_leg_sound = gr.Audio(label="𦡠Right Leg", interactive=False, autoplay=True, visible=True)
composition_status = gr.Textbox(label="Composition Status", interactive=False, lines=5)
def start_and_activate_timer():
''' Start composing and activate timer for trials.
'''
result = start_composition()
last_trial_result[:] = result # Initialize with first trial result
if "DJ Mode" not in result[0]:
return (*result, gr.update(active=True), gr.update(visible=False))
else:
return (*result, gr.update(active=False), gr.update(visible=True))
# ITI logic: 3s blank, 1s prompt, then trial
timer_counter = {"count": 0}
last_trial_result = [None] * 9 # Adjust length to match your outputs
def timer_tick():
''' Timer tick handler for ITI and trials.
'''
# 0,1,2: blank, 3: prompt, 4: trial
if timer_counter["count"] < 3:
timer_counter["count"] += 1
# Show blank prompt, keep last outputs
if len(last_trial_result) == 8:
return (*last_trial_result, gr.update(active=True), gr.update(visible=False))
elif len(last_trial_result) == 10:
# DJ mode: blank prompt
result = list(last_trial_result)
result[1] = ""
return tuple(result)
else:
raise ValueError(f"Unexpected last_trial_result length: {len(last_trial_result)}")
elif timer_counter["count"] == 3:
timer_counter["count"] += 1
# Show prompt
result = list(last_trial_result)
result[1] = "Imagine next movement"
if len(result) == 8:
return (*result, gr.update(active=True), gr.update(visible=False))
elif len(result) == 10:
return tuple(result)
else:
raise ValueError(f"Unexpected result length in prompt: {len(result)}")
else:
timer_counter["count"] = 0
# Run trial
result = list(start_composition())
last_trial_result[:] = result # Save for next blanks/prompts
if len(result) == 8:
# Pre-DJ mode: add timer and button updates
if any(isinstance(x, str) and "DJ Mode" in x for x in result):
return (*result, gr.update(active=False), gr.update(visible=True))
else:
return (*result, gr.update(active=True), gr.update(visible=False))
elif len(result) == 10:
return tuple(result)
else:
raise ValueError(f"Unexpected result length in timer_tick: {len(result)}")
def continue_dj():
''' Continue DJ phase from button click.
'''
result = continue_dj_phase()
if len(result) == 8:
return (*result, gr.update(active=False), gr.update(visible=True))
elif len(result) == 10:
return result
else:
raise ValueError(f"Unexpected result length in continue_dj: {len(result)}")
start_btn.click(
fn=start_and_activate_timer,
outputs=[predicted_display, timer_display, eeg_plot,
left_hand_sound, right_hand_sound, left_leg_sound, right_leg_sound, composition_status, timer, continue_btn]
)
timer_event = timer.tick(
fn=timer_tick,
outputs=[predicted_display, timer_display, eeg_plot,
left_hand_sound, right_hand_sound, left_leg_sound, right_leg_sound, composition_status, timer, continue_btn]
)
def stop_composing():
''' Stop composing and reset state (works in both building and DJ mode). '''
timer_counter["count"] = 0
app_state['composition_active'] = False # Ensure new cycle on next start
# Reset sound_control state for new session
sound_control.current_phase = "building"
sound_control.composition_layers = {}
sound_control.movements_completed = set()
sound_control.active_effects = {m: False for m in ["left_hand", "right_hand", "left_leg", "right_leg"]}
# Clear static audio cache in get_movement_sounds
if hasattr(get_movement_sounds, 'audio_cache'):
for m in get_movement_sounds.audio_cache:
get_movement_sounds.audio_cache[m][True] = None
get_movement_sounds.audio_cache[m][False] = None
if hasattr(get_movement_sounds, 'last_effect_state'):
for m in get_movement_sounds.last_effect_state:
get_movement_sounds.last_effect_state[m] = None
if hasattr(get_movement_sounds, 'play_counter'):
for m in get_movement_sounds.play_counter:
get_movement_sounds.play_counter[m] = 0
get_movement_sounds.total_calls = 0
# Clear UI and deactivate timer, hide continue button, clear all audio
last_trial_result[:] = ["--", "Stopped", None, None, None, None, None, "Stopped"]
return ("--", "Stopped", None, None, None, None, None, "Stopped", gr.update(active=False), gr.update(visible=False))
stop_btn.click(
fn=stop_composing,
outputs=[predicted_display, timer_display, eeg_plot,
left_hand_sound, right_hand_sound, left_leg_sound, right_leg_sound, composition_status, timer, continue_btn],
cancels=[timer_event]
)
continue_btn.click(
fn=continue_dj,
outputs=[predicted_display, timer_display, eeg_plot,
left_hand_sound, right_hand_sound, left_leg_sound, right_leg_sound, composition_status, timer, continue_btn]
)
with gr.TabItem("π Manual Classifier"):
gr.Markdown("# Manual Classifier")
gr.Markdown("Select a movement and run the classifier manually on a random epoch for that movement. Results will be accumulated below.")
movement_dropdown = gr.Dropdown(choices=["left_hand", "right_hand", "left_leg", "right_leg"], label="Select Movement")
manual_btn = gr.Button("Run Classifier", variant="primary")
manual_predicted = gr.Textbox(label="Predicted Class", interactive=False)
manual_confidence = gr.Textbox(label="Confidence", interactive=False)
manual_plot = gr.Plot(label="EEG Data Visualization")
manual_probs = gr.Plot(label="Class Probabilities")
manual_confmat = gr.Plot(label="Confusion Matrix (Session)")
# Session state for confusion matrix
from collections import defaultdict
session_confmat = defaultdict(lambda: defaultdict(int))
def manual_classify(selected_movement):
''' Manually classify a random epoch for the selected movement.
'''
import matplotlib.pyplot as plt
import numpy as np
if app_state['demo_data'] is None or app_state['demo_labels'] is None:
return "No data", "No data", None, None, None
label_idx = [k for k, v in classifier.class_names.items() if v == selected_movement][0]
matching_indices = np.where(app_state['demo_labels'] == label_idx)[0]
if len(matching_indices) == 0:
return "No data for this movement", "", None, None, None
chosen_idx = np.random.choice(matching_indices)
epoch_data = app_state['demo_data'][chosen_idx]
predicted_class, confidence, probs = classifier.predict(epoch_data)
predicted_name = classifier.class_names[predicted_class]
# Update confusion matrix
session_confmat[selected_movement][predicted_name] += 1
# Plot confusion matrix
classes = ["left_hand", "right_hand", "left_leg", "right_leg"]
confmat = np.zeros((4, 4), dtype=int)
for i, true_m in enumerate(classes):
for j, pred_m in enumerate(classes):
confmat[i, j] = session_confmat[true_m][pred_m]
fig_confmat, ax = plt.subplots(figsize=(4, 4))
ax.imshow(confmat, cmap="Blues")
ax.set_xticks(np.arange(4))
ax.set_yticks(np.arange(4))
ax.set_xticklabels(classes, rotation=45, ha="right")
ax.set_yticklabels(classes)
ax.set_xlabel("Predicted")
ax.set_ylabel("True")
for i in range(4):
for j in range(4):
ax.text(j, i, str(confmat[i, j]), ha="center", va="center", color="black")
fig_confmat.tight_layout()
# Plot class probabilities
if isinstance(probs, dict):
probs_list = [probs.get(cls, 0.0) for cls in classes]
else:
probs_list = list(probs)
fig_probs, ax_probs = plt.subplots(figsize=(4, 2))
ax_probs.bar(classes, probs_list)
ax_probs.set_ylabel("Probability")
ax_probs.set_ylim(0, 1)
fig_probs.tight_layout()
# EEG plot
fig = create_eeg_plot(epoch_data, selected_movement, predicted_name, confidence, False, app_state.get('ch_names'))
# Close all open figures to avoid warnings
plt.close(fig_confmat)
plt.close(fig_probs)
plt.close(fig)
return predicted_name, f"{confidence:.2f}", fig, fig_probs, fig_confmat
manual_btn.click(
fn=manual_classify,
inputs=[movement_dropdown],
outputs=[manual_predicted, manual_confidence, manual_plot, manual_probs, manual_confmat]
)
return demo
if __name__ == "__main__":
print("[DEBUG] Starting app main block...")
demo = create_interface()
print("[DEBUG] Gradio interface created. Launching...")
demo.launch(server_name="0.0.0.0", server_port=7860)
|