Spaces:
Sleeping
Sleeping
File size: 7,373 Bytes
fa96cf5 b906dc7 66947ed fa96cf5 b906dc7 fa96cf5 66947ed fa96cf5 b906dc7 fa96cf5 c6beb41 fa96cf5 c6beb41 fa96cf5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
"""
EEG Motor Imagery Classifier Module
----------------------------------
Handles model loading, inference, and real-time prediction for motor imagery classification.
Based on the ShallowFBCSPNet architecture from the original eeg_motor_imagery.py script.
"""
import torch
import torch.nn as nn
import numpy as np
from braindecode.models.shallow_fbcsp import ShallowFBCSPNet
from braindecode.modules.layers import Ensure4d # necessary for loading
from typing import Dict, Tuple
import os
from data_processor import EEGDataProcessor
from config import DEMO_DATA_PATHS
class MotorImageryClassifier:
"""
Motor imagery classifier using ShallowFBCSPNet model.
"""
def __init__(self, model_path: str = "model.pth"):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model = None
self.model_path = model_path
self.class_names = {
0: "left_hand",
1: "right_hand",
2: "neutral",
3: "left_leg",
4: "tongue",
5: "right_leg"
}
self.is_loaded = False
def load_model(self, n_chans: int, n_times: int, n_outputs: int = 6):
"""Load the pre-trained ShallowFBCSPNet model.
If model file not found or incompatible, fallback to LOSO training.
"""
try:
self.model = ShallowFBCSPNet(
n_chans=n_chans,
n_outputs=n_outputs,
n_times=n_times,
final_conv_length="auto"
).to(self.device)
if os.path.exists(self.model_path):
try:
# Load only the state_dict, using weights_only=True and allowlist ShallowFBCSPNet
with torch.serialization.safe_globals([Ensure4d, ShallowFBCSPNet]):
checkpoint = torch.load(
self.model_path,
map_location=self.device,
weights_only=False # must be False to allow objects
)
# If checkpoint is a state_dict (dict of tensors)
if isinstance(checkpoint, dict) and all(isinstance(k, str) for k in checkpoint.keys()):
self.model.load_state_dict(checkpoint)
# If checkpoint is the full model object
elif isinstance(checkpoint, ShallowFBCSPNet):
self.model = checkpoint.to(self.device)
else:
raise ValueError("Unknown checkpoint format")
#self.model.load_state_dict(state_dict)
self.model.eval()
self.is_loaded = True
except Exception:
self.is_loaded = False
else:
self.is_loaded = False
except Exception:
self.is_loaded = False
def get_model_status(self) -> str:
"""Get current model status for user interface."""
if self.is_loaded:
return "✅ Pre-trained model loaded and ready"
else:
return "🔄 Using LOSO training (training new model from EEG data)"
def predict(self, eeg_data: np.ndarray) -> Tuple[int, float, Dict[str, float]]:
"""
Predict motor imagery class from EEG data.
Args:
eeg_data: EEG data array of shape (n_channels, n_times)
Returns:
predicted_class: Predicted class index
confidence: Confidence score
probabilities: Dictionary of class probabilities
"""
if not self.is_loaded:
return self._fallback_loso_classification(eeg_data)
# Ensure input is the right shape: (batch, channels, time)
if eeg_data.ndim == 2:
eeg_data = eeg_data[np.newaxis, ...]
# Convert to tensor
x = torch.from_numpy(eeg_data.astype(np.float32)).to(self.device)
with torch.no_grad():
output = self.model(x)
probabilities = torch.softmax(output, dim=1)
predicted_class = torch.argmax(probabilities, dim=1).cpu().numpy()[0]
confidence = probabilities.max().cpu().numpy()
# Convert to dictionary
prob_dict = {
self.class_names[i]: probabilities[0, i].cpu().numpy()
for i in range(len(self.class_names))
}
return predicted_class, confidence, prob_dict
def _fallback_loso_classification(self, eeg_data: np.ndarray) -> Tuple[int, float, Dict[str, float]]:
"""
Fallback classification using LOSO (Leave-One-Session-Out) training.
Trains a model on available data when pre-trained model isn't available.
"""
try:
# Initialize data processor
processor = EEGDataProcessor()
# Check if demo data files exist
available_files = [f for f in DEMO_DATA_PATHS if os.path.exists(f)]
if len(available_files) < 2:
raise ValueError(f"Not enough data files for LOSO training. Need at least 2 files, found {len(available_files)}. "
f"Available files: {available_files}")
# Perform LOSO split (using first session as test)
X_train, y_train, X_test, y_test, session_info = processor.prepare_loso_split(
available_files, test_session_idx=0
)
# Get data dimensions
n_chans = X_train.shape[1]
n_times = X_train.shape[2]
# Create and train model
self.model = ShallowFBCSPNet(
n_chans=n_chans,
n_outputs=6,
n_times=n_times,
final_conv_length="auto"
).to(self.device)
# Simple training loop
optimizer = torch.optim.Adam(self.model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
# Convert training data to tensors
X_train_tensor = torch.from_numpy(X_train).float().to(self.device)
y_train_tensor = torch.from_numpy(y_train).long().to(self.device)
# Quick training (just a few epochs for demo)
self.model.train()
for epoch in range(50):
optimizer.zero_grad()
outputs = self.model(X_train_tensor)
loss = criterion(outputs, y_train_tensor)
loss.backward()
optimizer.step()
# Switch to evaluation mode
self.model.eval()
self.is_loaded = True
# Now make prediction with the trained model
return self.predict(eeg_data)
except Exception as e:
raise RuntimeError(f"Failed to initialize classifier. Neither pre-trained model nor LOSO training succeeded: {e}")
|