""" Sound Management System for EEG Motor Imagery Classification (Clean Transition Version) ------------------------------------------------------------------------------- Handles sound mapping, layering, and music composition based on motor imagery predictions. Supports seamless transition from building (layering) to DJ (effects) phase. """ import numpy as np import soundfile as sf from typing import Dict from pathlib import Path class AudioEffectsProcessor: @staticmethod def apply_fade_in_out(data: np.ndarray, samplerate: int, fade_duration: float = 0.5) -> np.ndarray: fade_samples = int(fade_duration * samplerate) data = np.copy(data) if fade_samples > 0 and fade_samples * 2 < len(data): fade_in_curve = np.linspace(0, 1, fade_samples) fade_out_curve = np.linspace(1, 0, fade_samples) data[:fade_samples] = data[:fade_samples] * fade_in_curve data[-fade_samples:] = data[-fade_samples:] * fade_out_curve return data @staticmethod def apply_high_pass_filter(data: np.ndarray, samplerate: int, cutoff: float = 800.0) -> np.ndarray: from scipy import signal nyquist = samplerate / 2 normalized_cutoff = cutoff / nyquist b, a = signal.butter(4, normalized_cutoff, btype='high', analog=False) return signal.filtfilt(b, a, data) @staticmethod def apply_low_pass_filter(data: np.ndarray, samplerate: int, cutoff: float = 1200.0) -> np.ndarray: from scipy import signal nyquist = samplerate / 2 normalized_cutoff = cutoff / nyquist b, a = signal.butter(4, normalized_cutoff, btype='low', analog=False) return signal.filtfilt(b, a, data) @staticmethod def apply_reverb(data: np.ndarray, samplerate: int, room_size: float = 0.5) -> np.ndarray: delay_samples = int(0.08 * samplerate) decay = 0.4 * room_size reverb_data = np.copy(data) for i in range(3): delay = delay_samples * (i + 1) if delay < len(data): gain = decay ** (i + 1) reverb_data[delay:] += data[:-delay] * gain return 0.7 * data + 0.3 * reverb_data @staticmethod def apply_echo(data: np.ndarray, samplerate: int, delay_time: float = 0.3, feedback: float = 0.4) -> np.ndarray: delay_samples = int(delay_time * samplerate) echo_data = np.copy(data) for i in range(delay_samples, len(data)): echo_data[i] += feedback * echo_data[i - delay_samples] return 0.7 * data + 0.3 * echo_data @staticmethod def apply_compressor(data: np.ndarray, samplerate: int, threshold: float = 0.2, ratio: float = 4.0) -> np.ndarray: # Simple compressor: reduce gain above threshold compressed = np.copy(data) over_threshold = np.abs(compressed) > threshold compressed[over_threshold] = np.sign(compressed[over_threshold]) * (threshold + (np.abs(compressed[over_threshold]) - threshold) / ratio) return compressed @staticmethod def process_layer_with_effects(audio_data: np.ndarray, samplerate: int, movement: str, active_effects: Dict[str, bool]) -> np.ndarray: processed_data = np.copy(audio_data) effect_map = { "left_hand": AudioEffectsProcessor.apply_fade_in_out, # Fade in/out "right_hand": AudioEffectsProcessor.apply_low_pass_filter, # Low Pass "left_leg": AudioEffectsProcessor.apply_compressor, # Compressor "right_leg": AudioEffectsProcessor.apply_echo, # Echo (vocals) } effect_func = effect_map.get(movement) if active_effects.get(movement, False) and effect_func: if movement == "left_hand": processed_data = effect_func(processed_data, samplerate, fade_duration=0.5) else: processed_data = effect_func(processed_data, samplerate) return processed_data class SoundManager: def __init__(self, sound_dir: str = "sounds"): self.available_sounds = [ "SoundHelix-Song-6_bass.wav", "SoundHelix-Song-6_drums.wav", "SoundHelix-Song-6_instruments.wav", "SoundHelix-Song-6_vocals.wav" ] self.sound_dir = Path(sound_dir) self.current_cycle = 0 self.current_step = 0 self.cycle_complete = False self.completed_cycles = 0 self.max_cycles = 2 self.composition_layers = {} self.current_phase = "building" self.active_effects = {m: False for m in ["left_hand", "right_hand", "left_leg", "right_leg"]} self.active_movements = ["left_hand", "right_hand", "left_leg", "right_leg"] self.current_movement_sequence = [] self.movements_completed = set() self.active_layers: Dict[str, str] = {} self.loaded_sounds = {} self._generate_new_sequence() self._load_sound_files() # Provide mapping from movement to sound file name for compatibility self.current_sound_mapping = {m: f for m, f in zip(self.active_movements, self.available_sounds)} # Track DJ effect trigger counts for each movement self.dj_effect_counters = {m: 0 for m in self.active_movements} self.cycle_stats = {'total_cycles': 0, 'successful_classifications': 0, 'total_attempts': 0} def _load_sound_files(self): self.loaded_sounds = {} for movement, filename in self.current_sound_mapping.items(): file_path = self.sound_dir / filename if file_path.exists(): data, sample_rate = sf.read(str(file_path)) if len(data.shape) > 1: data = np.mean(data, axis=1) self.loaded_sounds[movement] = {'data': data, 'sample_rate': sample_rate, 'sound_file': str(file_path)} def _generate_new_sequence(self): # Fixed movement order and mapping self.current_movement_sequence = ["left_hand", "right_hand", "left_leg", "right_leg"] self.current_sound_mapping = { "left_hand": "SoundHelix-Song-6_instruments.wav", "right_hand": "SoundHelix-Song-6_bass.wav", "left_leg": "SoundHelix-Song-6_drums.wav", "right_leg": "SoundHelix-Song-6_vocals.wav" } self.movements_completed = set() self.current_step = 0 self._load_sound_files() def get_current_target_movement(self) -> str: # Always process left_hand last in DJ mode incomplete = [m for m in self.active_movements if m not in self.movements_completed] if not incomplete: return "cycle_complete" # If in DJ mode, left_hand should be last if getattr(self, 'current_phase', None) == 'dj_effects': # Remove left_hand from incomplete unless it's the only one left if 'left_hand' in incomplete and len(incomplete) > 1: incomplete = [m for m in incomplete if m != 'left_hand'] import random movement = random.choice(incomplete) return movement def process_classification(self, predicted_class: str, confidence: float, threshold: float = 0.7, force_add: bool = False) -> Dict: result = {'sound_added': False, 'cycle_complete': False, 'audio_file': None} # If force_add is True, allow adding sound for any valid movement not already completed if force_add: if ( confidence >= threshold and predicted_class in self.loaded_sounds and predicted_class not in self.composition_layers ): sound_info = dict(self.loaded_sounds[predicted_class]) sound_info['confidence'] = confidence self.composition_layers[predicted_class] = sound_info self.movements_completed.add(predicted_class) result['sound_added'] = True else: pass else: current_target = self.get_current_target_movement() if ( predicted_class == current_target and confidence >= threshold and predicted_class in self.loaded_sounds and predicted_class not in self.composition_layers ): sound_info = dict(self.loaded_sounds[predicted_class]) sound_info['confidence'] = confidence self.composition_layers[predicted_class] = sound_info self.movements_completed.add(predicted_class) result['sound_added'] = True else: pass if len(self.movements_completed) >= len(self.active_movements): result['cycle_complete'] = True self.current_phase = "dj_effects" return result def start_new_cycle(self): self.current_cycle += 1 self.current_step = 0 self.cycle_complete = False self.cycle_stats['total_cycles'] += 1 self._generate_new_sequence() self.composition_layers = {} # Clear layers for new cycle self.movements_completed = set() self.current_phase = "building" self.active_layers = {} def transition_to_dj_phase(self): if len(self.composition_layers) >= len(self.active_movements): self.current_phase = "dj_effects" return True return False def toggle_dj_effect(self, movement: str, brief: bool = True, duration: float = 1.0) -> dict: import threading if self.current_phase != "dj_effects": return {"effect_applied": False, "message": "Not in DJ effects phase"} if movement not in self.active_effects: return {"effect_applied": False, "message": f"Unknown movement: {movement}"} # Only toggle effect at counts 1, 4, 8, ... (i.e., 1 and then every multiple of 4) self.dj_effect_counters[movement] += 1 count = self.dj_effect_counters[movement] if count != 1 and (count - 1) % 4 != 0: return {"effect_applied": False, "message": f"Effect for {movement} only toggled at 1, 4, 8, ... (count={count})"} # Toggle effect ON self.active_effects[movement] = True effect_status = "ON" # Schedule effect OFF after duration if brief def turn_off_effect(): self.active_effects[movement] = False if brief: timer = threading.Timer(duration, turn_off_effect) timer.daemon = True timer.start() return {"effect_applied": True, "effect_name": movement, "effect_status": effect_status, "count": count} def get_composition_info(self) -> Dict: layers_by_cycle = {0: []} for movement, layer_info in self.composition_layers.items(): confidence = layer_info.get('confidence', 0) if isinstance(layer_info, dict) else 0 layers_by_cycle[0].append({'movement': movement, 'confidence': confidence}) # Add DJ effect status for each movement dj_effects_status = {m: self.active_effects.get(m, False) for m in self.active_movements} return {'layers_by_cycle': layers_by_cycle, 'dj_effects_status': dj_effects_status} def get_sound_mapping_options(self) -> Dict: return { 'movements': self.active_movements, 'available_sounds': self.available_sounds, 'current_mapping': {m: self.loaded_sounds[m]['sound_file'] for m in self.loaded_sounds} } def get_all_layers(self): return {m: info['sound_file'] for m, info in self.composition_layers.items() if 'sound_file' in info}