someonecooool's picture
Update app.py
f81ca0d verified
import tempfile
from pathlib import Path
import gradio as gr
import numpy as np
import soundfile as sf
import torch
from dia.model import Dia
MODEL_ID = "nari-labs/Dia-1.6B-0626"
SAMPLE_RATE = 44100
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Dia.from_pretrained(MODEL_ID, device=device)
def generate_audio(text, audio_prompt):
if not text or text.isspace():
raise gr.Error("Text input cannot be empty.")
prompt_path = None
if audio_prompt is not None:
sr, audio = audio_prompt
if audio is not None and np.size(audio) > 0:
with tempfile.NamedTemporaryFile(mode="wb", suffix=".wav", delete=False) as f:
sf.write(f.name, audio, sr)
prompt_path = f.name
audio_out = model.generate(
text=text,
audio_prompt=prompt_path,
cfg_scale=3.0,
temperature=1.2,
top_p=0.9,
)
if prompt_path is not None and Path(prompt_path).exists():
try:
Path(prompt_path).unlink()
except OSError:
pass
audio_np = np.asarray(audio_out, dtype=np.float32)
return SAMPLE_RATE, audio_np
with gr.Blocks() as demo:
gr.Markdown("# Dia 1.6B-0626 Text-to-Speech")
with gr.Row():
with gr.Column(scale=1):
text_in = gr.Textbox(
label="Input text",
lines=6,
placeholder="Start with [S1] / [S2] tags, e.g.:\n[S1] Hello. [S2] Hi there.",
)
audio_prompt_in = gr.Audio(
label="Audio prompt (optional, voice cloning)",
sources=["upload", "microphone"],
type="numpy",
)
btn = gr.Button("Generate", variant="primary")
with gr.Column(scale=1):
audio_out = gr.Audio(
label="Generated audio",
type="numpy",
autoplay=False,
)
btn.click(
fn=generate_audio,
inputs=[text_in, audio_prompt_in],
outputs=[audio_out],
api_name="generate",
)
if __name__ == "__main__":
demo.launch()