| import os | |
| import gradio as gr | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from peft import PeftModel, PeftConfig | |
| MAX_NEW_TOKENS = 100 | |
| TEMPERATURE = 0.5 | |
| TOP_P = 0.95 | |
| TOP_K = 50 | |
| REPETITION_PENALTY = 1.05 | |
| SPECIAL_TOKEN = "->:" | |
| HF_TOKEN = os.getenv('HF_TOKEN') | |
| def load_model(): | |
| base_model_id = "meta-llama/Llama-2-7b-hf" | |
| peft_model_id = "somosnlp-hackathon-2025/Llama-2-7b-hf-lora-refranes" | |
| config = PeftConfig.from_pretrained(peft_model_id) | |
| base_model = AutoModelForCausalLM.from_pretrained( | |
| base_model_id, | |
| torch_dtype="auto", | |
| device_map="auto", | |
| token=HF_TOKEN | |
| ) | |
| model = PeftModel.from_pretrained(base_model, peft_model_id) | |
| tokenizer = AutoTokenizer.from_pretrained(base_model_id) | |
| if tokenizer.pad_token is None: | |
| tokenizer.pad_token = tokenizer.eos_token | |
| return model, tokenizer | |
| model = None | |
| tokenizer = None | |
| def generate_response(input_text, max_tokens, temperature, top_p, repetition_penalty): | |
| global model, tokenizer | |
| if model is None or tokenizer is None: | |
| model, tokenizer = load_model() | |
| inputs = tokenizer(input_text + SPECIAL_TOKEN, return_tensors="pt").to(model.device) | |
| with torch.no_grad(): | |
| outputs = model.generate( | |
| **inputs, | |
| max_new_tokens=max_tokens, | |
| temperature=temperature, | |
| do_sample=True, | |
| top_p=top_p, | |
| top_k=TOP_K, | |
| repetition_penalty=repetition_penalty | |
| ) | |
| full_response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| if SPECIAL_TOKEN in full_response: | |
| response_parts = full_response.split(SPECIAL_TOKEN, 1) | |
| if len(response_parts) > 1: | |
| return response_parts[1].strip() | |
| return full_response.strip() | |
| def chat_interface(message, history, system_message, max_tokens, temperature, top_p, repetition_penalty): | |
| prompt = f"{message}" | |
| if system_message: | |
| prompt = f"{system_message}\n{message}" | |
| response = generate_response( | |
| prompt, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| repetition_penalty | |
| ) | |
| return response | |
| demo = gr.ChatInterface( | |
| chat_interface, | |
| title="Sabiduría Popular - Refranes", | |
| description="Esta aplicación explica el significado de refranes en español utilizando un modelo de lenguaje. Escribe un refrán y el modelo te explicará su significado.", | |
| examples=[ | |
| ["A caballo regalado no le mires el diente"], | |
| ["Más vale pájaro en mano que ciento volando"], | |
| ["Quien a buen árbol se arrima, buena sombra le cobija"], | |
| ["No por mucho madrugar amanece más temprano"] | |
| ], | |
| additional_inputs=[ | |
| gr.Textbox( | |
| value="Eres un experto en sabiduría popular española. Tu tarea es explicar el significado de refranes en español de manera clara y concisa.", | |
| label="System message" | |
| ), | |
| gr.Slider( | |
| minimum=1, | |
| maximum=500, | |
| value=MAX_NEW_TOKENS, | |
| step=1, | |
| label="Max new tokens" | |
| ), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=2.0, | |
| value=TEMPERATURE, | |
| step=0.1, | |
| label="Temperature" | |
| ), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=TOP_P, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)" | |
| ), | |
| gr.Slider( | |
| minimum=1.0, | |
| maximum=2.0, | |
| value=REPETITION_PENALTY, | |
| step=0.05, | |
| label="Repetition penalty" | |
| ), | |
| ], | |
| theme="soft" | |
| ) | |
| if __name__ == "__main__": | |
| print("Iniciando la aplicación. El modelo se cargará con la primera consulta.") | |
| demo.launch() |