Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import openai, subprocess
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from gradio.components import Audio, Textbox
|
| 4 |
+
|
| 5 |
+
import os
|
| 6 |
+
import re
|
| 7 |
+
import tiktoken
|
| 8 |
+
from transformers import GPT2Tokenizer
|
| 9 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
| 10 |
+
import whisper
|
| 11 |
+
|
| 12 |
+
import os
|
| 13 |
+
import dropbox
|
| 14 |
+
import datetime
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
ACCESS_TOKEN = os.environ["ACCESS_TOKEN"]
|
| 18 |
+
dbx = dropbox.Dropbox(ACCESS_TOKEN)
|
| 19 |
+
openai.api_key = os.environ["OPENAI_API_KEY"]
|
| 20 |
+
|
| 21 |
+
initial_message = {"role": "system", "content": 'You are a USMLE Tutor. Respond with ALWAYS layered "bullet points" (listing rather than sentences) to all input with a fun mneumonics to memorize that list. But you can answer up to 1200 words if the user requests longer response.'}
|
| 22 |
+
messages = [initial_message]
|
| 23 |
+
|
| 24 |
+
answer_count = 0
|
| 25 |
+
|
| 26 |
+
# set up whisper model
|
| 27 |
+
model = whisper.load_model("base")
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def num_tokens_from_messages(messages, model="gpt-3.5-turbo-0301"):
|
| 32 |
+
"""Returns the number of tokens used by a list of messages."""
|
| 33 |
+
try:
|
| 34 |
+
encoding = tiktoken.encoding_for_model(model)
|
| 35 |
+
except KeyError:
|
| 36 |
+
encoding = tiktoken.get_encoding("cl100k_base")
|
| 37 |
+
if model == "gpt-3.5-turbo-0301": # note: future models may deviate from this
|
| 38 |
+
num_tokens = 0
|
| 39 |
+
for message in messages:
|
| 40 |
+
num_tokens += 4 # every message follows <im_start>{role/name}\n{content}<im_end>\n
|
| 41 |
+
for key, value in message.items():
|
| 42 |
+
num_tokens += len(encoding.encode(value))
|
| 43 |
+
if key == "name": # if there's a name, the role is omitted
|
| 44 |
+
num_tokens += -1 # role is always required and always 1 token
|
| 45 |
+
num_tokens += 2 # every reply is primed with <im_start>assistant
|
| 46 |
+
return num_tokens
|
| 47 |
+
else:
|
| 48 |
+
raise NotImplementedError(f"""num_tokens_from_messages() is not presently implemented for model {model}.
|
| 49 |
+
See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens.""")
|
| 50 |
+
|
| 51 |
+
def transcribe(audio, text):
|
| 52 |
+
|
| 53 |
+
global messages
|
| 54 |
+
global answer_count
|
| 55 |
+
transcript = None
|
| 56 |
+
|
| 57 |
+
if audio is not None:
|
| 58 |
+
audio_file = open(audio, "rb")
|
| 59 |
+
transcript = openai.Audio.transcribe("whisper-1", audio_file, language="en")
|
| 60 |
+
# transcript = model.transcribe(audio_file, language="english")
|
| 61 |
+
messages.append({"role": "user", "content": transcript["text"]})
|
| 62 |
+
|
| 63 |
+
if transcript is None:
|
| 64 |
+
# Split the input text into sentences
|
| 65 |
+
sentences = re.split("(?<=[.!?]) +", text)
|
| 66 |
+
|
| 67 |
+
# Initialize a list to store the tokens
|
| 68 |
+
input_tokens = []
|
| 69 |
+
|
| 70 |
+
# Add each sentence to the input_tokens list
|
| 71 |
+
for sentence in sentences:
|
| 72 |
+
# Tokenize the sentence using the GPT-2 tokenizer
|
| 73 |
+
sentence_tokens = tokenizer.encode(sentence)
|
| 74 |
+
# Check if adding the sentence would exceed the token limit
|
| 75 |
+
if len(input_tokens) + len(sentence_tokens) < 1440:
|
| 76 |
+
# Add the sentence tokens to the input_tokens list
|
| 77 |
+
input_tokens.extend(sentence_tokens)
|
| 78 |
+
else:
|
| 79 |
+
# If adding the sentence would exceed the token limit, truncate it
|
| 80 |
+
sentence_tokens = sentence_tokens[:1440-len(input_tokens)]
|
| 81 |
+
input_tokens.extend(sentence_tokens)
|
| 82 |
+
break
|
| 83 |
+
# Decode the input tokens into text
|
| 84 |
+
input_text = tokenizer.decode(input_tokens)
|
| 85 |
+
|
| 86 |
+
# Add the input text to the messages list
|
| 87 |
+
messages.append({"role": "user", "content": input_text})
|
| 88 |
+
|
| 89 |
+
# Check if the accumulated tokens have exceeded 2096
|
| 90 |
+
num_tokens = num_tokens_from_messages(messages)
|
| 91 |
+
if num_tokens > 2096:
|
| 92 |
+
# Concatenate the chat history
|
| 93 |
+
chat_transcript = ""
|
| 94 |
+
for message in messages:
|
| 95 |
+
if message['role'] != 'system':
|
| 96 |
+
chat_transcript += f"[ANSWER {answer_count}]" + message['role'] + ": " + message['content'] + "\n\n"
|
| 97 |
+
# Append the number of tokens used to the end of the chat transcript
|
| 98 |
+
|
| 99 |
+
chat_transcript_copy = chat_transcript
|
| 100 |
+
chat_transcript_copy += f"Number of tokens used: {num_tokens}\n\n"
|
| 101 |
+
filename = datetime.datetime.now().strftime("%Y%m%d%H%M_conversation_history.txt")
|
| 102 |
+
dbx.files_upload(chat_transcript_copy.encode('utf-8'), f'/{filename}', mode=dropbox.files.WriteMode.overwrite, autorename=False, client_modified=None, mute=False)
|
| 103 |
+
dbx.files_upload(chat_transcript_copy.encode('utf-8'), '/conversation_history_note_backup.txt', mode=dropbox.files.WriteMode.overwrite, autorename=False, client_modified=None, mute=False)
|
| 104 |
+
|
| 105 |
+
if num_tokens > 2200:
|
| 106 |
+
# Reset the messages list and answer counter
|
| 107 |
+
messages = [initial_message]
|
| 108 |
+
answer_count = 0
|
| 109 |
+
input_text = 'input too many tokens to be corrected'
|
| 110 |
+
# Add the input text to the messages list
|
| 111 |
+
messages.append({"role": "user", "content": input_text})
|
| 112 |
+
|
| 113 |
+
# Increment the answer counter
|
| 114 |
+
answer_count += 1
|
| 115 |
+
# Add the answer counter to the system message
|
| 116 |
+
system_message = openai.ChatCompletion.create(
|
| 117 |
+
model="gpt-3.5-turbo",
|
| 118 |
+
messages=messages,
|
| 119 |
+
max_tokens=2000
|
| 120 |
+
)["choices"][0]["message"]
|
| 121 |
+
# Add the system message to the messages list
|
| 122 |
+
messages.append(system_message)
|
| 123 |
+
|
| 124 |
+
# Concatenate the chat history
|
| 125 |
+
chat_transcript = ""
|
| 126 |
+
for message in messages:
|
| 127 |
+
if message['role'] != 'system':
|
| 128 |
+
chat_transcript += f"[ANSWER {answer_count}]" + message['role'] + ": " + message['content'] + "\n\n"
|
| 129 |
+
# Append the number of tokens used to the end of the chat transcript
|
| 130 |
+
|
| 131 |
+
with open("conversation_history.txt", "a") as f:
|
| 132 |
+
f.write(chat_transcript)
|
| 133 |
+
|
| 134 |
+
chat_transcript_copy = chat_transcript
|
| 135 |
+
chat_transcript_copy += f"Number of tokens used: {num_tokens}\n\n"
|
| 136 |
+
filename = datetime.datetime.now().strftime("%Y%m%d%H_conversation_history.txt")
|
| 137 |
+
dbx.files_upload(chat_transcript_copy.encode('utf-8'), f'/{filename}', mode=dropbox.files.WriteMode.overwrite, autorename=False, client_modified=None, mute=False)
|
| 138 |
+
dbx.files_upload(chat_transcript_copy.encode('utf-8'), '/conversation_history.txt', mode=dropbox.files.WriteMode.overwrite, autorename=False, client_modified=None, mute=False)
|
| 139 |
+
|
| 140 |
+
return chat_transcript
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
audio_input = Audio(source="microphone", type="filepath", label="Record your message")
|
| 144 |
+
text_input = Textbox(label="Type your message", max_length=4096)
|
| 145 |
+
|
| 146 |
+
output_text = gr.outputs.Textbox(label="Response")
|
| 147 |
+
output_audio = Audio()
|
| 148 |
+
|
| 149 |
+
iface = gr.Interface(
|
| 150 |
+
fn=transcribe,
|
| 151 |
+
inputs=[audio_input, text_input],
|
| 152 |
+
# outputs=(["audio", "text"]),
|
| 153 |
+
outputs="text",
|
| 154 |
+
title="Your Excellence Never Abates (YENA)",
|
| 155 |
+
description="Talk to the AI Tutor YENA",
|
| 156 |
+
capture_session=True,
|
| 157 |
+
autoplay=True)
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
# Launch Gradio interface
|
| 161 |
+
iface.launch()
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
# from transformers import pipeline, T5Tokenizer
|
| 169 |
+
# import pyttsx3
|
| 170 |
+
# import threading
|
| 171 |
+
# import time
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
# Set up speech engine
|
| 177 |
+
# engine = pyttsx3.init()
|
| 178 |
+
|
| 179 |
+
# def speak(text):
|
| 180 |
+
# # Get the current rate of the engine
|
| 181 |
+
# rate = engine.getProperty('rate')
|
| 182 |
+
|
| 183 |
+
# # Calculate the estimated time in seconds based on the length of the message and the current rate
|
| 184 |
+
# estimated_time = len(text) / (rate / 10)
|
| 185 |
+
|
| 186 |
+
# # Speak the text using the text-to-speech engine
|
| 187 |
+
|
| 188 |
+
# engine.say(text)
|
| 189 |
+
# engine.runAndWait()
|
| 190 |
+
# if engine._inLoop:
|
| 191 |
+
# # Wait for the speech engine to finish speaking
|
| 192 |
+
# time.sleep(estimated_time*1.5)
|
| 193 |
+
# engine.endLoop()
|