Update app.py
Browse files
app.py
CHANGED
|
@@ -1,31 +1,16 @@
|
|
| 1 |
-
import openai
|
| 2 |
import gradio as gr
|
| 3 |
from gradio.components import Audio, Textbox
|
| 4 |
-
|
| 5 |
import os
|
| 6 |
import re
|
| 7 |
-
import tiktoken
|
| 8 |
from transformers import GPT2Tokenizer
|
| 9 |
-
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
| 10 |
import whisper
|
| 11 |
import pandas as pd
|
| 12 |
-
import os
|
| 13 |
from datetime import datetime, timezone, timedelta
|
| 14 |
-
# import dropbox
|
| 15 |
-
# from notion_client import Client
|
| 16 |
import notion_df
|
| 17 |
|
| 18 |
-
API_KEY = os.environ["API_KEY"]
|
| 19 |
-
# # Define your API key
|
| 20 |
-
|
| 21 |
-
# my_API_KEY = os.environ["NOTION"]
|
| 22 |
-
# notion = Client(auth=my_API_KEY)
|
| 23 |
-
# # find the page you want to upload the file to
|
| 24 |
-
|
| 25 |
-
# ACCESS_TOKEN = os.environ["ACCESS_TOKEN"]
|
| 26 |
-
# dbx = dropbox.Dropbox(ACCESS_TOKEN)
|
| 27 |
-
|
| 28 |
openai.api_key = os.environ["OPENAI_API_KEY"]
|
|
|
|
| 29 |
|
| 30 |
initial_message = {"role": "system", "content": 'You are a USMLE Tutor. Respond with ALWAYS layered "bullet points" (listing rather than sentences) to all input with a fun mneumonics to memorize that list. But you can answer up to 1200 words if the user requests longer response.'}
|
| 31 |
messages = [initial_message]
|
|
@@ -35,8 +20,6 @@ answer_count = 0
|
|
| 35 |
# set up whisper model
|
| 36 |
model = whisper.load_model("base")
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
def num_tokens_from_messages(messages, model="gpt-3.5-turbo-0301"):
|
| 41 |
"""Returns the number of tokens used by a list of messages."""
|
| 42 |
try:
|
|
@@ -58,175 +41,129 @@ def num_tokens_from_messages(messages, model="gpt-3.5-turbo-0301"):
|
|
| 58 |
See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens.""")
|
| 59 |
|
| 60 |
def transcribe(audio, text):
|
| 61 |
-
|
| 62 |
global messages
|
| 63 |
global answer_count
|
| 64 |
-
|
| 65 |
-
|
| 66 |
if audio is not None:
|
| 67 |
audio_file = open(audio, "rb")
|
| 68 |
transcript = openai.Audio.transcribe("whisper-1", audio_file, language="en")
|
| 69 |
-
# transcript = model.transcribe(audio_file, language="english")
|
| 70 |
messages.append({"role": "user", "content": transcript["text"]})
|
| 71 |
-
|
| 72 |
-
if
|
| 73 |
# Split the input text into sentences
|
| 74 |
sentences = re.split("(?<=[.!?]) +", text)
|
| 75 |
-
|
| 76 |
-
#
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
#
|
| 80 |
-
for sentence in
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
messages.append({"role": "user", "content": input_text})
|
| 97 |
-
|
| 98 |
-
# Get the current date and time in the local timezone
|
| 99 |
-
now_local = datetime.now()
|
| 100 |
-
# Create a timezone object for Eastern Time (ET)
|
| 101 |
-
et_tz = timezone(timedelta(hours=-5))
|
| 102 |
-
# Adjust the date and time to Eastern Time (ET)
|
| 103 |
-
now_et = now_local.astimezone(et_tz)
|
| 104 |
-
|
| 105 |
-
# Check if the accumulated tokens have exceeded 2096
|
| 106 |
num_tokens = num_tokens_from_messages(messages)
|
| 107 |
if num_tokens > 2096:
|
| 108 |
# Concatenate the chat history
|
| 109 |
chat_transcript = ""
|
| 110 |
for message in messages:
|
| 111 |
if message['role'] != 'system':
|
| 112 |
-
chat_transcript += f"[ANSWER {answer_count}]
|
| 113 |
# Append the number of tokens used to the end of the chat transcript
|
| 114 |
-
|
| 115 |
-
chat_transcript_copy = chat_transcript
|
| 116 |
-
chat_transcript_copy += f"Number of tokens used: {num_tokens}\n\n"
|
| 117 |
|
| 118 |
-
# Get the current
|
| 119 |
-
|
| 120 |
-
#
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
# string dataframe?
|
| 125 |
df = pd.DataFrame([chat_transcript])
|
| 126 |
notion_df.upload(df, 'https://www.notion.so/personal-5e3978680ca848bda844452129955138?pvs=4', title=str(published_date), api_key=API_KEY)
|
| 127 |
|
| 128 |
-
if num_tokens > 2200:
|
| 129 |
# Reset the messages list and answer counter
|
| 130 |
messages = [initial_message]
|
| 131 |
answer_count = 0
|
| 132 |
-
input_text = 'Can you click the Submit button one more time? (say Yes)'
|
| 133 |
-
# Add the input text to the messages list
|
| 134 |
-
messages.append({"role": "user", "content": input_text})
|
| 135 |
|
| 136 |
# Increment the answer counter
|
| 137 |
answer_count += 1
|
| 138 |
-
|
|
|
|
| 139 |
system_message = openai.ChatCompletion.create(
|
| 140 |
model="gpt-3.5-turbo",
|
| 141 |
messages=messages,
|
| 142 |
max_tokens=2000
|
| 143 |
)["choices"][0]["message"]
|
|
|
|
|
|
|
|
|
|
| 144 |
# Add the system message to the messages list
|
| 145 |
-
messages.append(system_message)
|
| 146 |
|
| 147 |
# Concatenate the chat history
|
| 148 |
chat_transcript = ""
|
| 149 |
for message in messages:
|
| 150 |
if message['role'] != 'system':
|
| 151 |
-
chat_transcript += f"[ANSWER {answer_count}]
|
| 152 |
-
# Append the number of tokens used to the end of the chat transcript
|
| 153 |
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
chat_transcript_copy = chat_transcript
|
| 158 |
-
chat_transcript_copy += f"Number of tokens used: {num_tokens}\n\n"
|
| 159 |
-
filename = datetime.now().strftime("%m%d%y_%H:%M_conversation_history.txt")
|
| 160 |
|
| 161 |
-
#
|
| 162 |
-
|
|
|
|
|
|
|
| 163 |
|
| 164 |
-
#
|
| 165 |
-
|
| 166 |
-
# Convert to Eastern Time Zone
|
| 167 |
-
eastern_time = utc_time + timedelta(hours=-5)
|
| 168 |
-
# Format as string (YY-MM-DD HH:MM)
|
| 169 |
-
published_date = eastern_time.strftime('%m-%d-%y %H:%M')
|
| 170 |
-
|
| 171 |
-
# Get the current UTC time
|
| 172 |
-
utc_time = datetime.now(timezone.utc)
|
| 173 |
-
# Convert to Eastern Time Zone
|
| 174 |
-
eastern_time = utc_time + timedelta(hours=-5)
|
| 175 |
-
# Format as string (YY-MM-DD HH:MM)
|
| 176 |
-
published_date = eastern_time.strftime('%m-%d-%y %H:%M')
|
| 177 |
-
# string dataframe
|
| 178 |
-
df = pd.DataFrame([chat_transcript_copy])
|
| 179 |
notion_df.upload(df, 'https://www.notion.so/personal-5e3978680ca848bda844452129955138?pvs=4', title=str(published_date), api_key=API_KEY)
|
| 180 |
-
|
| 181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
|
| 184 |
audio_input = Audio(source="microphone", type="filepath", label="Record your message")
|
| 185 |
text_input = Textbox(label="Type your message", max_length=4096)
|
| 186 |
|
| 187 |
output_text = gr.outputs.Textbox(label="Response")
|
| 188 |
-
output_audio = Audio()
|
| 189 |
|
| 190 |
iface = gr.Interface(
|
| 191 |
fn=transcribe,
|
| 192 |
inputs=[audio_input, text_input],
|
| 193 |
-
# outputs=(["audio", "text"]),
|
| 194 |
outputs="text",
|
| 195 |
-
title="
|
| 196 |
-
description="
|
| 197 |
-
capture_session=True,
|
| 198 |
-
autoplay=True)
|
| 199 |
-
|
| 200 |
|
| 201 |
# Launch Gradio interface
|
| 202 |
iface.launch()
|
| 203 |
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
# from transformers import pipeline, T5Tokenizer
|
| 208 |
-
# import pyttsx3
|
| 209 |
-
# import threading
|
| 210 |
-
# import time
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
# Set up speech engine
|
| 216 |
-
# engine = pyttsx3.init()
|
| 217 |
-
|
| 218 |
-
# def speak(text):
|
| 219 |
-
# # Get the current rate of the engine
|
| 220 |
-
# rate = engine.getProperty('rate')
|
| 221 |
-
|
| 222 |
-
# # Calculate the estimated time in seconds based on the length of the message and the current rate
|
| 223 |
-
# estimated_time = len(text) / (rate / 10)
|
| 224 |
-
|
| 225 |
-
# # Speak the text using the text-to-speech engine
|
| 226 |
-
|
| 227 |
-
# engine.say(text)
|
| 228 |
-
# engine.runAndWait()
|
| 229 |
-
# if engine._inLoop:
|
| 230 |
-
# # Wait for the speech engine to finish speaking
|
| 231 |
-
# time.sleep(estimated_time*1.5)
|
| 232 |
-
# engine.endLoop()
|
|
|
|
| 1 |
+
import openai
|
| 2 |
import gradio as gr
|
| 3 |
from gradio.components import Audio, Textbox
|
|
|
|
| 4 |
import os
|
| 5 |
import re
|
|
|
|
| 6 |
from transformers import GPT2Tokenizer
|
|
|
|
| 7 |
import whisper
|
| 8 |
import pandas as pd
|
|
|
|
| 9 |
from datetime import datetime, timezone, timedelta
|
|
|
|
|
|
|
| 10 |
import notion_df
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
openai.api_key = os.environ["OPENAI_API_KEY"]
|
| 13 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
| 14 |
|
| 15 |
initial_message = {"role": "system", "content": 'You are a USMLE Tutor. Respond with ALWAYS layered "bullet points" (listing rather than sentences) to all input with a fun mneumonics to memorize that list. But you can answer up to 1200 words if the user requests longer response.'}
|
| 16 |
messages = [initial_message]
|
|
|
|
| 20 |
# set up whisper model
|
| 21 |
model = whisper.load_model("base")
|
| 22 |
|
|
|
|
|
|
|
| 23 |
def num_tokens_from_messages(messages, model="gpt-3.5-turbo-0301"):
|
| 24 |
"""Returns the number of tokens used by a list of messages."""
|
| 25 |
try:
|
|
|
|
| 41 |
See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens.""")
|
| 42 |
|
| 43 |
def transcribe(audio, text):
|
|
|
|
| 44 |
global messages
|
| 45 |
global answer_count
|
| 46 |
+
|
|
|
|
| 47 |
if audio is not None:
|
| 48 |
audio_file = open(audio, "rb")
|
| 49 |
transcript = openai.Audio.transcribe("whisper-1", audio_file, language="en")
|
|
|
|
| 50 |
messages.append({"role": "user", "content": transcript["text"]})
|
| 51 |
+
|
| 52 |
+
if text is not None:
|
| 53 |
# Split the input text into sentences
|
| 54 |
sentences = re.split("(?<=[.!?]) +", text)
|
| 55 |
+
|
| 56 |
+
# Tokenize the sentences using the GPT-2 tokenizer
|
| 57 |
+
sentence_tokens = [tokenizer.encode(sentence) for sentence in sentences]
|
| 58 |
+
|
| 59 |
+
# Flatten the list of tokens
|
| 60 |
+
input_tokens = [token for sentence in sentence_tokens for token in sentence]
|
| 61 |
+
|
| 62 |
+
# Check if adding the input tokens would exceed the token limit
|
| 63 |
+
num_tokens = num_tokens_from_messages(messages)
|
| 64 |
+
if num_tokens + len(input_tokens) > 2200:
|
| 65 |
+
# Reset the messages list and answer counter
|
| 66 |
+
messages = [initial_message]
|
| 67 |
+
answer_count = 0
|
| 68 |
+
input_text = 'Can you click the Submit button one more time? (say Yes)'
|
| 69 |
+
messages.append({"role": "user", "content": input_text})
|
| 70 |
+
else:
|
| 71 |
+
# Add the input tokens to the messages list
|
| 72 |
+
input_text = tokenizer.decode(input_tokens)
|
| 73 |
+
messages.append({"role": "user", "content": input_text})
|
| 74 |
+
|
| 75 |
+
# Check if the accumulated tokens have exceeded the limit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
num_tokens = num_tokens_from_messages(messages)
|
| 77 |
if num_tokens > 2096:
|
| 78 |
# Concatenate the chat history
|
| 79 |
chat_transcript = ""
|
| 80 |
for message in messages:
|
| 81 |
if message['role'] != 'system':
|
| 82 |
+
chat_transcript += f"[ANSWER {answer_count}]{message['role']}: {message['content']}\n\n"
|
| 83 |
# Append the number of tokens used to the end of the chat transcript
|
| 84 |
+
chat_transcript += f"Number of tokens used: {num_tokens}\n\n"
|
|
|
|
|
|
|
| 85 |
|
| 86 |
+
# Get the current time in Eastern Time (ET)
|
| 87 |
+
now_et = datetime.now(timezone(timedelta(hours=-5)))
|
| 88 |
+
# Format the time as string (YY-MM-DD HH:MM)
|
| 89 |
+
published_date = now_et.strftime('%m-%d-%y %H:%M')
|
| 90 |
+
|
| 91 |
+
# Upload the chat transcript to Notion
|
|
|
|
| 92 |
df = pd.DataFrame([chat_transcript])
|
| 93 |
notion_df.upload(df, 'https://www.notion.so/personal-5e3978680ca848bda844452129955138?pvs=4', title=str(published_date), api_key=API_KEY)
|
| 94 |
|
|
|
|
| 95 |
# Reset the messages list and answer counter
|
| 96 |
messages = [initial_message]
|
| 97 |
answer_count = 0
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
# Increment the answer counter
|
| 100 |
answer_count += 1
|
| 101 |
+
|
| 102 |
+
# Generate the system message using the OpenAI API
|
| 103 |
system_message = openai.ChatCompletion.create(
|
| 104 |
model="gpt-3.5-turbo",
|
| 105 |
messages=messages,
|
| 106 |
max_tokens=2000
|
| 107 |
)["choices"][0]["message"]
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
|
| 111 |
# Add the system message to the messages list
|
| 112 |
+
messages.append({"role": "system", "content": system_message})
|
| 113 |
|
| 114 |
# Concatenate the chat history
|
| 115 |
chat_transcript = ""
|
| 116 |
for message in messages:
|
| 117 |
if message['role'] != 'system':
|
| 118 |
+
chat_transcript += f"[ANSWER {answer_count}]{message['role']}: {message['content']}\n\n"
|
|
|
|
| 119 |
|
| 120 |
+
# Append the number of tokens used to the end of the chat transcript
|
| 121 |
+
num_tokens = num_tokens_from_messages(messages)
|
| 122 |
+
chat_transcript += f"Number of tokens used: {num_tokens}\n\n"
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
+
# Get the current time in Eastern Time (ET)
|
| 125 |
+
now_et = datetime.now(timezone(timedelta(hours=-5)))
|
| 126 |
+
# Format the time as string (YY-MM-DD HH:MM)
|
| 127 |
+
published_date = now_et.strftime('%m-%d-%y %H:%M')
|
| 128 |
|
| 129 |
+
# Upload the chat transcript to Notion
|
| 130 |
+
df = pd.DataFrame([chat_transcript])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
notion_df.upload(df, 'https://www.notion.so/personal-5e3978680ca848bda844452129955138?pvs=4', title=str(published_date), api_key=API_KEY)
|
| 132 |
+
|
| 133 |
+
# Reset the messages list and answer counter if the token limit is exceeded
|
| 134 |
+
if num_tokens > 2096:
|
| 135 |
+
messages = [initial_message]
|
| 136 |
+
answer_count = 0
|
| 137 |
+
else:
|
| 138 |
+
# Increment the answer counter
|
| 139 |
+
answer_count += 1
|
| 140 |
+
|
| 141 |
+
# Generate the system message using the OpenAI API
|
| 142 |
+
system_message = openai.Completion.create(
|
| 143 |
+
engine="text-davinci-002",
|
| 144 |
+
prompt=[{"text": f"{message['role']}: {message['content']}\n\n"} for message in messages],
|
| 145 |
+
temperature=0.7,
|
| 146 |
+
max_tokens=2000,
|
| 147 |
+
n=1,
|
| 148 |
+
stop=None,
|
| 149 |
+
)[0]["text"]
|
| 150 |
+
|
| 151 |
+
# Add the system message to the messages list
|
| 152 |
+
messages.append({"role": "system", "content": system_message})
|
| 153 |
|
| 154 |
|
| 155 |
audio_input = Audio(source="microphone", type="filepath", label="Record your message")
|
| 156 |
text_input = Textbox(label="Type your message", max_length=4096)
|
| 157 |
|
| 158 |
output_text = gr.outputs.Textbox(label="Response")
|
|
|
|
| 159 |
|
| 160 |
iface = gr.Interface(
|
| 161 |
fn=transcribe,
|
| 162 |
inputs=[audio_input, text_input],
|
|
|
|
| 163 |
outputs="text",
|
| 164 |
+
title="YENA",
|
| 165 |
+
description="Tutor YENA")
|
|
|
|
|
|
|
|
|
|
| 166 |
|
| 167 |
# Launch Gradio interface
|
| 168 |
iface.launch()
|
| 169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|