Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -27,102 +27,100 @@ def doc_emb(doc): # 文档向量化
|
|
| 27 |
value="""操作说明 step 3:PDF解析提交成功! 🙋 可以开始对话啦~"""), gr.Chatbot.update(visible=True)
|
| 28 |
|
| 29 |
|
| 30 |
-
def get_response(open_ai_key, msg, bot, doc_text_list, doc_embeddings):
|
| 31 |
-
now_len = len(msg)
|
| 32 |
-
his_bg = -1
|
| 33 |
-
for i in range(len(bot) - 1, -1, -1):
|
| 34 |
-
if now_len + len(bot[i][0]) + len(bot[i][1]) > history_max_len:
|
| 35 |
break
|
| 36 |
-
now_len += len(bot[i][0]) + len(bot[i][1])
|
| 37 |
-
his_bg = i
|
| 38 |
-
history = [] if his_bg == -1 else bot[his_bg:]
|
| 39 |
-
query_embedding = embedder.encode([msg])
|
| 40 |
-
cos_scores = util.cos_sim(query_embedding, doc_embeddings)[0]
|
| 41 |
-
score_index = [[score, index] for score, index in zip(cos_scores, [i for i in range(len(cos_scores))])]
|
| 42 |
-
score_index.sort(key=lambda x: x[0], reverse=True)
|
| 43 |
print('score_index:\n', score_index)
|
| 44 |
-
index_set, sub_doc_list = set(), []
|
| 45 |
-
for s_i in score_index:
|
| 46 |
-
doc = doc_text_list[s_i[1]]
|
| 47 |
-
if now_len + len(doc) > all_max_len:
|
| 48 |
break
|
| 49 |
-
index_set.add(s_i[1])
|
| 50 |
-
now_len += len(doc)
|
| 51 |
# 可能段落截断错误,所以把上下段也加入进来
|
| 52 |
-
if s_i[1] > 0 and s_i[1] - 1 not in index_set:
|
| 53 |
-
doc = doc_text_list[s_i[1] - 1]
|
| 54 |
-
if now_len + len(doc) > all_max_len:
|
| 55 |
break
|
| 56 |
-
index_set.add(s_i[1] - 1)
|
| 57 |
-
now_len += len(doc)
|
| 58 |
-
if s_i[1] + 1 < len(doc_text_list) and s_i[1] + 1 not in index_set:
|
| 59 |
-
doc = doc_text_list[s_i[1] + 1]
|
| 60 |
-
if now_len + len(doc) > all_max_len:
|
| 61 |
break
|
| 62 |
-
index_set.add(s_i[1] + 1)
|
| 63 |
-
now_len += len(doc)
|
| 64 |
|
| 65 |
-
index_list = list(index_set)
|
| 66 |
-
index_list.sort()
|
| 67 |
-
for i in index_list:
|
| 68 |
-
sub_doc_list.append(doc_text_list[i])
|
| 69 |
-
document = '' if len(sub_doc_list) == 0 else '\n'.join(sub_doc_list)
|
| 70 |
messages = [{
|
| 71 |
"role": "system",
|
| 72 |
"content": "你是一个有用的助手,可以使用文章内容准确地回答问题。使用提供的文章来生成你的答案,但避免逐字复制文章。尽可能使用自己的话。准确、有用、简洁、清晰。"
|
| 73 |
-
}, {"role": "system", "content": "文章内容:\n" + document}]
|
| 74 |
-
for his in history:
|
| 75 |
-
messages.append({"role": "user", "content": his[0]})
|
| 76 |
-
messages.append({"role": "assistant", "content": his[1]})
|
| 77 |
-
messages.append({"role": "user", "content": msg})
|
| 78 |
-
req_json = {'messages': messages, 'key': open_ai_key, 'model': "gpt-3.5-turbo"}
|
| 79 |
-
data = {"content": json.dumps(req_json)}
|
| 80 |
print('data:\n', req_json)
|
| 81 |
result = requests.post(url=chat_url,
|
| 82 |
data=json.dumps(data),
|
| 83 |
headers=headers
|
| 84 |
-
)
|
| 85 |
-
res = result.json()['content']
|
| 86 |
-
bot.append([msg, res])
|
| 87 |
-
return bot[max(0, len(bot) - 3):]
|
| 88 |
|
| 89 |
|
| 90 |
-
def up_file(files):
|
| 91 |
-
doc_text_list = []
|
| 92 |
-
for idx, file in enumerate(files):
|
| 93 |
print(file.name)
|
| 94 |
-
with pdfplumber.open(file.name) as pdf:
|
| 95 |
-
for i in range(len(pdf.pages)):
|
| 96 |
# 读取PDF文档第i+1页
|
| 97 |
page = pdf.pages[i]
|
| 98 |
-
res_list = page.extract_text().split('\n')[:-1]
|
| 99 |
-
|
| 100 |
-
for j in range(len(page.images)):
|
| 101 |
# 获取图片的二进制流
|
| 102 |
img = page.images[j]
|
| 103 |
-
file_name = '{}-{}-{}.png'.format(str(time.time()), str(i), str(j))
|
| 104 |
-
with open(file_name, mode='wb') as f:
|
| 105 |
f.write(img['stream'].get_data())
|
| 106 |
try:
|
| 107 |
-
res = ocr.ocr(file_name)
|
| 108 |
except Exception as e:
|
| 109 |
-
res = []
|
| 110 |
-
if len(res) > 0:
|
| 111 |
-
res_list.append(' '.join([re['text'] for re in res]))
|
| 112 |
|
| 113 |
-
tables = page.extract_tables()
|
| 114 |
-
for table in tables:
|
| 115 |
# 第一列当成表头:
|
| 116 |
df = pd.DataFrame(table[1:], columns=table[0])
|
| 117 |
try:
|
| 118 |
-
records = json.loads(df.to_json(orient="records", force_ascii=False))
|
| 119 |
-
for rec in records:
|
| 120 |
-
res_list.append(json.dumps(rec, ensure_ascii=False))
|
| 121 |
except Exception as e:
|
| 122 |
-
res_list.append(str(df))
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
doc_text_list = [str(text).strip() for text in doc_text_list if len(str(text).strip()) > 0]
|
| 126 |
print(doc_text_list)
|
| 127 |
return gr.Textbox.update(value='\n'.join(doc_text_list), visible=True), gr.Button.update(
|
| 128 |
visible=True), gr.Markdown.update(
|
|
@@ -144,11 +142,11 @@ with gr.Blocks() as demo:
|
|
| 144 |
chat_bot = gr.Chatbot(visible=False) # 聊天机器人
|
| 145 |
msg_txt = gr.Textbox(label='消息框', placeholder='输入消息,点击发送', visible=False) # 消息框
|
| 146 |
with gr.Row():
|
| 147 |
-
chat_bu = gr.Button(value='发送', visible=False)
|
| 148 |
|
| 149 |
-
file.change(up_file, [file], [txt, doc_bu, md])
|
| 150 |
-
doc_bu.click(doc_emb, [txt], [doc_text_state, doc_emb_state, msg_txt, chat_bu, md, chat_bot])
|
| 151 |
-
chat_bu.click(get_response, [open_ai_key, msg_txt, chat_bot, doc_text_state, doc_emb_state], [chat_bot])
|
| 152 |
|
| 153 |
if __name__ == "__main__":
|
| 154 |
-
demo.queue().launch()
|
|
|
|
| 27 |
value="""操作说明 step 3:PDF解析提交成功! 🙋 可以开始对话啦~"""), gr.Chatbot.update(visible=True)
|
| 28 |
|
| 29 |
|
| 30 |
+
def get_response(open_ai_key, msg, bot, doc_text_list, doc_embeddings): # 获取机器人回复
|
| 31 |
+
now_len = len(msg) # 当前输入的长度
|
| 32 |
+
his_bg = -1 # 历史记录的起始位置
|
| 33 |
+
for i in range(len(bot) - 1, -1, -1): # 从后往前遍历历史记录
|
| 34 |
+
if now_len + len(bot[i][0]) + len(bot[i][1]) > history_max_len: # 如果超过了历史记录的最大长度,就不再加入
|
| 35 |
break
|
| 36 |
+
now_len += len(bot[i][0]) + len(bot[i][1]) # 更新当前长度
|
| 37 |
+
his_bg = i # 更新历史记录的起始位置
|
| 38 |
+
history = [] if his_bg == -1 else bot[his_bg:] # 获取历史记录
|
| 39 |
+
query_embedding = embedder.encode([msg]) # 输入向量化
|
| 40 |
+
cos_scores = util.cos_sim(query_embedding, doc_embeddings)[0] # 计算相似度
|
| 41 |
+
score_index = [[score, index] for score, index in zip(cos_scores, [i for i in range(len(cos_scores))])] # 相似度和索引对应
|
| 42 |
+
score_index.sort(key=lambda x: x[0], reverse=True) # 按相似度排序
|
| 43 |
print('score_index:\n', score_index)
|
| 44 |
+
index_set, sub_doc_list = set(), [] # 用于存储最终的索引和文档
|
| 45 |
+
for s_i in score_index: # 遍历相似度和索引对应
|
| 46 |
+
doc = doc_text_list[s_i[1]] # 获取文档
|
| 47 |
+
if now_len + len(doc) > all_max_len: # 如果超过了最大长度,就不再加入
|
| 48 |
break
|
| 49 |
+
index_set.add(s_i[1]) # 加入索引
|
| 50 |
+
now_len += len(doc) # 更新当前长度
|
| 51 |
# 可能段落截断错误,所以把上下段也加入进来
|
| 52 |
+
if s_i[1] > 0 and s_i[1] - 1 not in index_set: # 如果上一段没有加入
|
| 53 |
+
doc = doc_text_list[s_i[1] - 1] # 获取上一段
|
| 54 |
+
if now_len + len(doc) > all_max_len: # 如果超过了最大长度,就不再加入
|
| 55 |
break
|
| 56 |
+
index_set.add(s_i[1] - 1) # 加入索引
|
| 57 |
+
now_len += len(doc) # 更新当前长度
|
| 58 |
+
if s_i[1] + 1 < len(doc_text_list) and s_i[1] + 1 not in index_set: # 如果下一段没有加入
|
| 59 |
+
doc = doc_text_list[s_i[1] + 1] # 获取下一段
|
| 60 |
+
if now_len + len(doc) > all_max_len: # 如果超过了最大长度,就不再加入
|
| 61 |
break
|
| 62 |
+
index_set.add(s_i[1] + 1) # 加入索引
|
| 63 |
+
now_len += len(doc) # 更新当前长度
|
| 64 |
|
| 65 |
+
index_list = list(index_set) # 转换成list
|
| 66 |
+
index_list.sort() # 排序
|
| 67 |
+
for i in index_list: # 遍历索引
|
| 68 |
+
sub_doc_list.append(doc_text_list[i]) # 加入文档
|
| 69 |
+
document = '' if len(sub_doc_list) == 0 else '\n'.join(sub_doc_list) # 拼接文档
|
| 70 |
messages = [{
|
| 71 |
"role": "system",
|
| 72 |
"content": "你是一个有用的助手,可以使用文章内容准确地回答问题。使用提供的文章来生成你的答案,但避免逐字复制文章。尽可能使用自己的话。准确、有用、简洁、清晰。"
|
| 73 |
+
}, {"role": "system", "content": "文章内容:\n" + document}] # 角色人物定义
|
| 74 |
+
for his in history: # ���历历史记录
|
| 75 |
+
messages.append({"role": "user", "content": his[0]}) # 加入用户的历史记录
|
| 76 |
+
messages.append({"role": "assistant", "content": his[1]}) # 加入机器人的历史记录
|
| 77 |
+
messages.append({"role": "user", "content": msg}) # 加入用户的当前输入
|
| 78 |
+
req_json = {'messages': messages, 'key': open_ai_key, 'model': "gpt-3.5-turbo"} # 请求json
|
| 79 |
+
data = {"content": json.dumps(req_json)} # 请求data
|
| 80 |
print('data:\n', req_json)
|
| 81 |
result = requests.post(url=chat_url,
|
| 82 |
data=json.dumps(data),
|
| 83 |
headers=headers
|
| 84 |
+
) # 请求
|
| 85 |
+
res = result.json()['content'] # 获取回复
|
| 86 |
+
bot.append([msg, res]) # 加入历史记录
|
| 87 |
+
return bot[max(0, len(bot) - 3):] # 返回最近3轮的历史记录
|
| 88 |
|
| 89 |
|
| 90 |
+
def up_file(files): # 上传文件
|
| 91 |
+
doc_text_list = [] # 用于存储文档
|
| 92 |
+
for idx, file in enumerate(files): # 遍历文件
|
| 93 |
print(file.name)
|
| 94 |
+
with pdfplumber.open(file.name) as pdf: # 打开pdf
|
| 95 |
+
for i in range(len(pdf.pages)): # 遍历pdf的每一页
|
| 96 |
# 读取PDF文档第i+1页
|
| 97 |
page = pdf.pages[i]
|
| 98 |
+
res_list = page.extract_text().split('\n')[:-1] # 提取文本
|
| 99 |
+
for j in range(len(page.images)): # 遍历图片
|
|
|
|
| 100 |
# 获取图片的二进制流
|
| 101 |
img = page.images[j]
|
| 102 |
+
file_name = '{}-{}-{}.png'.format(str(time.time()), str(i), str(j)) # 生成文件名
|
| 103 |
+
with open(file_name, mode='wb') as f: # 保存图片
|
| 104 |
f.write(img['stream'].get_data())
|
| 105 |
try:
|
| 106 |
+
res = ocr.ocr(file_name) # 识别图片
|
| 107 |
except Exception as e:
|
| 108 |
+
res = [] # 识别失败
|
| 109 |
+
if len(res) > 0: # 如果识别成功
|
| 110 |
+
res_list.append(' '.join([re['text'] for re in res])) # 加入识别结果
|
| 111 |
|
| 112 |
+
tables = page.extract_tables() # 提取表格
|
| 113 |
+
for table in tables: # 遍历表格
|
| 114 |
# 第一列当成表头:
|
| 115 |
df = pd.DataFrame(table[1:], columns=table[0])
|
| 116 |
try:
|
| 117 |
+
records = json.loads(df.to_json(orient="records", force_ascii=False)) # 转换成json
|
| 118 |
+
for rec in records: # 遍历json
|
| 119 |
+
res_list.append(json.dumps(rec, ensure_ascii=False)) # 加入json
|
| 120 |
except Exception as e:
|
| 121 |
+
res_list.append(str(df)) # 如果转换识别,直接把表格转为str
|
| 122 |
+
doc_text_list += res_list # 加入文档
|
| 123 |
+
doc_text_list = [str(text).strip() for text in doc_text_list if len(str(text).strip()) > 0] # 去除空格
|
|
|
|
| 124 |
print(doc_text_list)
|
| 125 |
return gr.Textbox.update(value='\n'.join(doc_text_list), visible=True), gr.Button.update(
|
| 126 |
visible=True), gr.Markdown.update(
|
|
|
|
| 142 |
chat_bot = gr.Chatbot(visible=False) # 聊天机器人
|
| 143 |
msg_txt = gr.Textbox(label='消息框', placeholder='输入消息,点击发送', visible=False) # 消息框
|
| 144 |
with gr.Row():
|
| 145 |
+
chat_bu = gr.Button(value='发送', visible=False) # 发送按钮
|
| 146 |
|
| 147 |
+
file.change(up_file, [file], [txt, doc_bu, md]) # 上传文件
|
| 148 |
+
doc_bu.click(doc_emb, [txt], [doc_text_state, doc_emb_state, msg_txt, chat_bu, md, chat_bot]) # 提交解析结果
|
| 149 |
+
chat_bu.click(get_response, [open_ai_key, msg_txt, chat_bot, doc_text_state, doc_emb_state], [chat_bot]) # 发送消息
|
| 150 |
|
| 151 |
if __name__ == "__main__":
|
| 152 |
+
demo.queue().launch()
|