Spaces:
Runtime error
Runtime error
Victoria Slocum
commited on
Commit
·
a997532
1
Parent(s):
804e6f2
Feat: Add noun chunks
Browse files
app.py
CHANGED
|
@@ -20,6 +20,7 @@ texts = {"en": DEFAULT_TEXT, "ca": "Apple està buscant comprar una startup del
|
|
| 20 |
"pl": "Poczuł przyjemną woń mocnej kawy.", "pt": "Apple está querendo comprar uma startup do Reino Unido por 100 milhões de dólares", "ro": "Apple plănuiește să cumpere o companie britanică pentru un miliard de dolari", "ru": "Apple рассматривает возможность покупки стартапа из Соединённого Королевства за $1 млрд", "sv": "Apple överväger att köpa brittisk startup för 1 miljard dollar.", "zh": "作为语言而言,为世界使用人数最多的语言,目前世界有五分之一人口做为母语。"}
|
| 21 |
|
| 22 |
button_css = "float: right; --tw-border-opacity: 1; border-color: rgb(229 231 235 / var(--tw-border-opacity)); --tw-gradient-from: rgb(243 244 246 / 0.7); --tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to, rgb(243 244 246 / 0)); --tw-gradient-to: rgb(229 231 235 / 0.8); --tw-text-opacity: 1; color: rgb(55 65 81 / var(--tw-text-opacity)); border-width: 1px; --tw-bg-opacity: 1; background-color: rgb(255 255 255 / var(--tw-bg-opacity)); background-image: linear-gradient(to bottom right, var(--tw-gradient-stops)); display: inline-flex; flex: 1 1 0%; align-items: center; justify-content: center; --tw-shadow: 0 1px 2px 0 rgb(0 0 0 / 0.05); --tw-shadow-colored: 0 1px 2px 0 var(--tw-shadow-color); box-shadow: var(--tw-ring-offset-shadow, 0 0 #0000), var(--tw-ring-shadow, 0 0 #0000), var(--tw-shadow); -webkit-appearance: button; border-radius: 0.5rem; padding-top: 0.5rem; padding-bottom: 0.5rem; padding-left: 1rem; padding-right: 1rem; font-size: 1rem; line-height: 1.5rem; font-weight: 600;"
|
|
|
|
| 23 |
|
| 24 |
def get_all_models():
|
| 25 |
with open("requirements.txt") as f:
|
|
@@ -32,14 +33,17 @@ def get_all_models():
|
|
| 32 |
models.append(model)
|
| 33 |
return models
|
| 34 |
|
|
|
|
| 35 |
models = get_all_models()
|
| 36 |
|
|
|
|
| 37 |
def download_svg(svg):
|
| 38 |
encode = base64.b64encode(bytes(svg, 'utf-8'))
|
| 39 |
img = 'data:image/svg+xml;base64,' + str(encode)[2:-1]
|
| 40 |
html = f'<a download="displacy.svg" href="{img}" style="{button_css}">Download as SVG</a>'
|
| 41 |
return html
|
| 42 |
|
|
|
|
| 43 |
def dependency(text, col_punct, col_phrase, compact, bg, font, model):
|
| 44 |
model_name = model + "_sm"
|
| 45 |
nlp = spacy.load(model_name)
|
|
@@ -53,7 +57,7 @@ def dependency(text, col_punct, col_phrase, compact, bg, font, model):
|
|
| 53 |
|
| 54 |
def entity(text, ents, model):
|
| 55 |
model_name = model + "_sm"
|
| 56 |
-
nlp = spacy.load(model_name)
|
| 57 |
doc = nlp(text)
|
| 58 |
options = {"ents": ents}
|
| 59 |
svg = displacy.render(doc, style="ent", options=options)
|
|
@@ -87,6 +91,29 @@ def default_token(text, attributes, model):
|
|
| 87 |
return data, model_name
|
| 88 |
|
| 89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
def random_vectors(text, model):
|
| 91 |
model_name = model + "_md"
|
| 92 |
nlp = spacy.load(model_name)
|
|
@@ -203,7 +230,8 @@ with demo:
|
|
| 203 |
with gr.Column():
|
| 204 |
gr.Markdown(" ")
|
| 205 |
with gr.Column():
|
| 206 |
-
dep_model = gr.Textbox(
|
|
|
|
| 207 |
with gr.Row():
|
| 208 |
with gr.Column():
|
| 209 |
col_punct = gr.Checkbox(
|
|
@@ -217,14 +245,16 @@ with demo:
|
|
| 217 |
with gr.Column():
|
| 218 |
text = gr.Textbox(
|
| 219 |
label="Text Color", value="black")
|
| 220 |
-
|
| 221 |
dep_output = gr.HTML(value=dependency(
|
| 222 |
DEFAULT_TEXT, True, True, False, DEFAULT_COLOR, "black", DEFAULT_MODEL)[0])
|
| 223 |
with gr.Row():
|
| 224 |
with gr.Column():
|
| 225 |
-
dep_button = gr.Button(
|
|
|
|
| 226 |
with gr.Column():
|
| 227 |
-
dep_download_button = gr.HTML(
|
|
|
|
| 228 |
gr.Markdown(" ")
|
| 229 |
with gr.Box():
|
| 230 |
with gr.Column():
|
|
@@ -239,12 +269,14 @@ with demo:
|
|
| 239 |
with gr.Column():
|
| 240 |
gr.Markdown(" ")
|
| 241 |
with gr.Column():
|
| 242 |
-
ent_model = gr.Textbox(
|
|
|
|
| 243 |
ent_input = gr.CheckboxGroup(
|
| 244 |
DEFAULT_ENTS, value=DEFAULT_ENTS)
|
| 245 |
ent_output = gr.HTML(value=entity(
|
| 246 |
DEFAULT_TEXT, DEFAULT_ENTS, DEFAULT_MODEL)[0])
|
| 247 |
-
ent_button = gr.Button(
|
|
|
|
| 248 |
with gr.Box():
|
| 249 |
with gr.Column():
|
| 250 |
with gr.Row():
|
|
@@ -258,7 +290,8 @@ with demo:
|
|
| 258 |
with gr.Column():
|
| 259 |
gr.Markdown(" ")
|
| 260 |
with gr.Column():
|
| 261 |
-
tok_model = gr.Textbox(
|
|
|
|
| 262 |
with gr.Row():
|
| 263 |
with gr.Column():
|
| 264 |
tok_input = gr.CheckboxGroup(
|
|
@@ -267,7 +300,27 @@ with demo:
|
|
| 267 |
gr.Markdown("")
|
| 268 |
tok_output = gr.Dataframe(headers=DEFAULT_TOK_ATTR, value=default_token(
|
| 269 |
DEFAULT_TEXT, DEFAULT_TOK_ATTR, DEFAULT_MODEL)[0], overflow_row_behaviour="paginate")
|
| 270 |
-
tok_button = gr.Button(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
with gr.Box():
|
| 272 |
with gr.Column():
|
| 273 |
with gr.Row():
|
|
@@ -281,7 +334,8 @@ with demo:
|
|
| 281 |
with gr.Column():
|
| 282 |
gr.Markdown(" ")
|
| 283 |
with gr.Column():
|
| 284 |
-
sim_model = gr.Textbox(
|
|
|
|
| 285 |
with gr.Row():
|
| 286 |
with gr.Column():
|
| 287 |
sim_text1 = gr.Textbox(
|
|
@@ -309,7 +363,8 @@ with demo:
|
|
| 309 |
with gr.Column():
|
| 310 |
gr.Markdown(" ")
|
| 311 |
with gr.Column():
|
| 312 |
-
span_model = gr.Textbox(
|
|
|
|
| 313 |
with gr.Row():
|
| 314 |
with gr.Column():
|
| 315 |
span1 = gr.Textbox(
|
|
@@ -341,6 +396,8 @@ with demo:
|
|
| 341 |
text_input, col_punct, col_phrase, compact, bg, text, model_input], outputs=[dep_output, dep_download_button, dep_model])
|
| 342 |
button.click(
|
| 343 |
entity, inputs=[text_input, ent_input, model_input], outputs=[ent_output, ent_model])
|
|
|
|
|
|
|
| 344 |
button.click(
|
| 345 |
token, inputs=[text_input, tok_input, model_input], outputs=[tok_output, tok_model])
|
| 346 |
button.click(vectors, inputs=[sim_text1,
|
|
@@ -353,6 +410,8 @@ with demo:
|
|
| 353 |
entity, inputs=[text_input, ent_input, model_input], outputs=[ent_output, ent_model])
|
| 354 |
tok_button.click(
|
| 355 |
token, inputs=[text_input, tok_input, model_input], outputs=[tok_output, tok_model])
|
|
|
|
|
|
|
| 356 |
sim_button.click(vectors, inputs=[
|
| 357 |
sim_text1, sim_text2, model_input], outputs=[sim_output, sim_model])
|
| 358 |
span_button.click(
|
|
|
|
| 20 |
"pl": "Poczuł przyjemną woń mocnej kawy.", "pt": "Apple está querendo comprar uma startup do Reino Unido por 100 milhões de dólares", "ro": "Apple plănuiește să cumpere o companie britanică pentru un miliard de dolari", "ru": "Apple рассматривает возможность покупки стартапа из Соединённого Королевства за $1 млрд", "sv": "Apple överväger att köpa brittisk startup för 1 miljard dollar.", "zh": "作为语言而言,为世界使用人数最多的语言,目前世界有五分之一人口做为母语。"}
|
| 21 |
|
| 22 |
button_css = "float: right; --tw-border-opacity: 1; border-color: rgb(229 231 235 / var(--tw-border-opacity)); --tw-gradient-from: rgb(243 244 246 / 0.7); --tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to, rgb(243 244 246 / 0)); --tw-gradient-to: rgb(229 231 235 / 0.8); --tw-text-opacity: 1; color: rgb(55 65 81 / var(--tw-text-opacity)); border-width: 1px; --tw-bg-opacity: 1; background-color: rgb(255 255 255 / var(--tw-bg-opacity)); background-image: linear-gradient(to bottom right, var(--tw-gradient-stops)); display: inline-flex; flex: 1 1 0%; align-items: center; justify-content: center; --tw-shadow: 0 1px 2px 0 rgb(0 0 0 / 0.05); --tw-shadow-colored: 0 1px 2px 0 var(--tw-shadow-color); box-shadow: var(--tw-ring-offset-shadow, 0 0 #0000), var(--tw-ring-shadow, 0 0 #0000), var(--tw-shadow); -webkit-appearance: button; border-radius: 0.5rem; padding-top: 0.5rem; padding-bottom: 0.5rem; padding-left: 1rem; padding-right: 1rem; font-size: 1rem; line-height: 1.5rem; font-weight: 600;"
|
| 23 |
+
NOUN_ATTR = ['text', 'root.text', 'root.dep_', 'root.head.text']
|
| 24 |
|
| 25 |
def get_all_models():
|
| 26 |
with open("requirements.txt") as f:
|
|
|
|
| 33 |
models.append(model)
|
| 34 |
return models
|
| 35 |
|
| 36 |
+
|
| 37 |
models = get_all_models()
|
| 38 |
|
| 39 |
+
|
| 40 |
def download_svg(svg):
|
| 41 |
encode = base64.b64encode(bytes(svg, 'utf-8'))
|
| 42 |
img = 'data:image/svg+xml;base64,' + str(encode)[2:-1]
|
| 43 |
html = f'<a download="displacy.svg" href="{img}" style="{button_css}">Download as SVG</a>'
|
| 44 |
return html
|
| 45 |
|
| 46 |
+
|
| 47 |
def dependency(text, col_punct, col_phrase, compact, bg, font, model):
|
| 48 |
model_name = model + "_sm"
|
| 49 |
nlp = spacy.load(model_name)
|
|
|
|
| 57 |
|
| 58 |
def entity(text, ents, model):
|
| 59 |
model_name = model + "_sm"
|
| 60 |
+
nlp = spacy.load(model_name)
|
| 61 |
doc = nlp(text)
|
| 62 |
options = {"ents": ents}
|
| 63 |
svg = displacy.render(doc, style="ent", options=options)
|
|
|
|
| 91 |
return data, model_name
|
| 92 |
|
| 93 |
|
| 94 |
+
def noun_chunks(text, model):
|
| 95 |
+
model_name = model + "_sm"
|
| 96 |
+
nlp = spacy.load(model_name)
|
| 97 |
+
data = []
|
| 98 |
+
doc = nlp(text)
|
| 99 |
+
for chunk in doc.noun_chunks:
|
| 100 |
+
data.append([chunk.text, chunk.root.text, chunk.root.dep_,
|
| 101 |
+
chunk.root.head.text])
|
| 102 |
+
data = pd.DataFrame(data, columns=NOUN_ATTR)
|
| 103 |
+
return data, model_name
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def default_noun_chunks(text, model):
|
| 107 |
+
model_name = model + "_sm"
|
| 108 |
+
nlp = spacy.load(model_name)
|
| 109 |
+
data = []
|
| 110 |
+
doc = nlp(text)
|
| 111 |
+
for chunk in doc.noun_chunks:
|
| 112 |
+
data.append([chunk.text, chunk.root.text, chunk.root.dep_,
|
| 113 |
+
chunk.root.head.text])
|
| 114 |
+
return data, model_name
|
| 115 |
+
|
| 116 |
+
|
| 117 |
def random_vectors(text, model):
|
| 118 |
model_name = model + "_md"
|
| 119 |
nlp = spacy.load(model_name)
|
|
|
|
| 230 |
with gr.Column():
|
| 231 |
gr.Markdown(" ")
|
| 232 |
with gr.Column():
|
| 233 |
+
dep_model = gr.Textbox(
|
| 234 |
+
label="Model", value="en_core_web_sm")
|
| 235 |
with gr.Row():
|
| 236 |
with gr.Column():
|
| 237 |
col_punct = gr.Checkbox(
|
|
|
|
| 245 |
with gr.Column():
|
| 246 |
text = gr.Textbox(
|
| 247 |
label="Text Color", value="black")
|
| 248 |
+
|
| 249 |
dep_output = gr.HTML(value=dependency(
|
| 250 |
DEFAULT_TEXT, True, True, False, DEFAULT_COLOR, "black", DEFAULT_MODEL)[0])
|
| 251 |
with gr.Row():
|
| 252 |
with gr.Column():
|
| 253 |
+
dep_button = gr.Button(
|
| 254 |
+
"Update Dependency Parser", variant="primary")
|
| 255 |
with gr.Column():
|
| 256 |
+
dep_download_button = gr.HTML(
|
| 257 |
+
value=download_svg(dep_output.value))
|
| 258 |
gr.Markdown(" ")
|
| 259 |
with gr.Box():
|
| 260 |
with gr.Column():
|
|
|
|
| 269 |
with gr.Column():
|
| 270 |
gr.Markdown(" ")
|
| 271 |
with gr.Column():
|
| 272 |
+
ent_model = gr.Textbox(
|
| 273 |
+
label="Model", value="en_core_web_sm")
|
| 274 |
ent_input = gr.CheckboxGroup(
|
| 275 |
DEFAULT_ENTS, value=DEFAULT_ENTS)
|
| 276 |
ent_output = gr.HTML(value=entity(
|
| 277 |
DEFAULT_TEXT, DEFAULT_ENTS, DEFAULT_MODEL)[0])
|
| 278 |
+
ent_button = gr.Button(
|
| 279 |
+
"Update Entity Recognizer", variant="primary")
|
| 280 |
with gr.Box():
|
| 281 |
with gr.Column():
|
| 282 |
with gr.Row():
|
|
|
|
| 290 |
with gr.Column():
|
| 291 |
gr.Markdown(" ")
|
| 292 |
with gr.Column():
|
| 293 |
+
tok_model = gr.Textbox(
|
| 294 |
+
label="Model", value="en_core_web_sm")
|
| 295 |
with gr.Row():
|
| 296 |
with gr.Column():
|
| 297 |
tok_input = gr.CheckboxGroup(
|
|
|
|
| 300 |
gr.Markdown("")
|
| 301 |
tok_output = gr.Dataframe(headers=DEFAULT_TOK_ATTR, value=default_token(
|
| 302 |
DEFAULT_TEXT, DEFAULT_TOK_ATTR, DEFAULT_MODEL)[0], overflow_row_behaviour="paginate")
|
| 303 |
+
tok_button = gr.Button(
|
| 304 |
+
"Update Token Properties", variant="primary")
|
| 305 |
+
with gr.Box():
|
| 306 |
+
with gr.Column():
|
| 307 |
+
with gr.Row():
|
| 308 |
+
with gr.Column():
|
| 309 |
+
gr.Markdown(
|
| 310 |
+
"## [🔗 Noun chunks](https://spacy.io/usage/linguistic-feature#noun-chunks)")
|
| 311 |
+
gr.Markdown(
|
| 312 |
+
"You can use `doc.noun_chunks` to extract noun phrases from a doc object")
|
| 313 |
+
with gr.Column():
|
| 314 |
+
with gr.Row():
|
| 315 |
+
with gr.Column():
|
| 316 |
+
gr.Markdown(" ")
|
| 317 |
+
with gr.Column():
|
| 318 |
+
noun_model = gr.Textbox(
|
| 319 |
+
label="Model", value="en_core_web_sm")
|
| 320 |
+
noun_output = gr.Dataframe(headers=NOUN_ATTR, value=default_noun_chunks(
|
| 321 |
+
DEFAULT_TEXT, DEFAULT_MODEL)[0], overflow_row_behaviour="paginate")
|
| 322 |
+
noun_button = gr.Button(
|
| 323 |
+
"Update Noun Chunks", variant="primary")
|
| 324 |
with gr.Box():
|
| 325 |
with gr.Column():
|
| 326 |
with gr.Row():
|
|
|
|
| 334 |
with gr.Column():
|
| 335 |
gr.Markdown(" ")
|
| 336 |
with gr.Column():
|
| 337 |
+
sim_model = gr.Textbox(
|
| 338 |
+
label="Model", value="en_core_web_md")
|
| 339 |
with gr.Row():
|
| 340 |
with gr.Column():
|
| 341 |
sim_text1 = gr.Textbox(
|
|
|
|
| 363 |
with gr.Column():
|
| 364 |
gr.Markdown(" ")
|
| 365 |
with gr.Column():
|
| 366 |
+
span_model = gr.Textbox(
|
| 367 |
+
label="Model", value="en_core_web_sm")
|
| 368 |
with gr.Row():
|
| 369 |
with gr.Column():
|
| 370 |
span1 = gr.Textbox(
|
|
|
|
| 396 |
text_input, col_punct, col_phrase, compact, bg, text, model_input], outputs=[dep_output, dep_download_button, dep_model])
|
| 397 |
button.click(
|
| 398 |
entity, inputs=[text_input, ent_input, model_input], outputs=[ent_output, ent_model])
|
| 399 |
+
button.click(
|
| 400 |
+
noun_chunks, inputs=[text_input, model_input], outputs=[noun_output, noun_model])
|
| 401 |
button.click(
|
| 402 |
token, inputs=[text_input, tok_input, model_input], outputs=[tok_output, tok_model])
|
| 403 |
button.click(vectors, inputs=[sim_text1,
|
|
|
|
| 410 |
entity, inputs=[text_input, ent_input, model_input], outputs=[ent_output, ent_model])
|
| 411 |
tok_button.click(
|
| 412 |
token, inputs=[text_input, tok_input, model_input], outputs=[tok_output, tok_model])
|
| 413 |
+
noun_button.click(
|
| 414 |
+
noun_chunks, inputs=[text_input, model_input], outputs=[noun_output, noun_model])
|
| 415 |
sim_button.click(vectors, inputs=[
|
| 416 |
sim_text1, sim_text2, model_input], outputs=[sim_output, sim_model])
|
| 417 |
span_button.click(
|