Spaces:
Runtime error
Runtime error
Victoria Slocum
commited on
Commit
·
d04bf10
1
Parent(s):
c0dee52
Feat: Add model change
Browse files- app.py +47 -27
- requirements.txt +91 -5
app.py
CHANGED
|
@@ -4,17 +4,30 @@ import random
|
|
| 4 |
from spacy.tokens import Span
|
| 5 |
import gradio as gr
|
| 6 |
|
| 7 |
-
DEFAULT_MODEL = "
|
| 8 |
DEFAULT_TEXT = "David Bowie moved to the US in 1974, initially staying in New York City before settling in Los Angeles."
|
| 9 |
DEFAULT_TOK_ATTR = ['idx', 'text', 'pos_', 'lemma_', 'shape_', 'dep_']
|
| 10 |
DEFAULT_ENTS = ['CARDINAL', 'DATE', 'EVENT', 'FAC', 'GPE', 'LANGUAGE', 'LAW', 'LOC', 'MONEY',
|
| 11 |
'NORP', 'ORDINAL', 'ORG', 'PERCENT', 'PERSON', 'PRODUCT', 'QUANTITY', 'TIME', 'WORK_OF_ART']
|
| 12 |
|
| 13 |
-
nlp = spacy.load("en_core_web_sm")
|
| 14 |
-
nlp2 = spacy.load("en_core_web_md")
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
doc = nlp(text)
|
| 19 |
options = {"compact": compact, "collapse_phrases": col_phrase,
|
| 20 |
"collapse_punct": col_punct}
|
|
@@ -22,19 +35,16 @@ def dependency(text, col_punct, col_phrase, compact):
|
|
| 22 |
return html
|
| 23 |
|
| 24 |
|
| 25 |
-
def entity(text, ents):
|
|
|
|
| 26 |
doc = nlp(text)
|
| 27 |
options = {"ents": ents}
|
| 28 |
html = displacy.render(doc, style="ent", options=options)
|
| 29 |
return html
|
| 30 |
|
| 31 |
|
| 32 |
-
def text
|
| 33 |
-
|
| 34 |
-
return default
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
def token(text, attributes):
|
| 38 |
data = []
|
| 39 |
doc = nlp(text)
|
| 40 |
for tok in doc:
|
|
@@ -45,8 +55,9 @@ def token(text, attributes):
|
|
| 45 |
return data
|
| 46 |
|
| 47 |
|
| 48 |
-
def vectors(text):
|
| 49 |
-
|
|
|
|
| 50 |
n_chunks = [chunk for chunk in doc.noun_chunks]
|
| 51 |
words = [tok for tok in doc if not tok.is_stop and tok.pos_ not in [
|
| 52 |
'PUNCT', "PROPN"]]
|
|
@@ -55,7 +66,8 @@ def vectors(text):
|
|
| 55 |
return round(choice[0].similarity(choice[1]), 2), choice[0].text, choice[1].text
|
| 56 |
|
| 57 |
|
| 58 |
-
def span(text, span1, span2, label1, label2):
|
|
|
|
| 59 |
doc = nlp(text)
|
| 60 |
idx1_1 = 0
|
| 61 |
idx1_2 = 0
|
|
@@ -88,8 +100,9 @@ def span(text, span1, span2, label1, label2):
|
|
| 88 |
demo = gr.Blocks()
|
| 89 |
|
| 90 |
with demo:
|
| 91 |
-
# gr.Markdown("Input text here!")
|
| 92 |
text_input = gr.Textbox(value=DEFAULT_TEXT, interactive=True)
|
|
|
|
|
|
|
| 93 |
with gr.Tabs():
|
| 94 |
with gr.TabItem("Dependency"):
|
| 95 |
col_punct = gr.Checkbox(label="Collapse Punctuation", value=True)
|
|
@@ -102,9 +115,11 @@ with demo:
|
|
| 102 |
entity_output = gr.HTML()
|
| 103 |
entity_button = gr.Button("Generate")
|
| 104 |
with gr.TabItem("Tokens"):
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
|
|
|
|
|
|
| 108 |
tok_button = gr.Button("Generate")
|
| 109 |
with gr.TabItem("Similarity"):
|
| 110 |
sim_text1 = gr.Textbox(value="David Bowie", label="Chosen")
|
|
@@ -112,21 +127,26 @@ with demo:
|
|
| 112 |
sim_output = gr.Textbox(value="0.09", label="Similarity Score")
|
| 113 |
sim_button = gr.Button("Generate")
|
| 114 |
with gr.TabItem("Spans"):
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
span_output = gr.HTML()
|
| 120 |
span_button = gr.Button("Generate")
|
| 121 |
|
| 122 |
depen_button.click(dependency, inputs=[
|
| 123 |
-
text_input, col_punct, col_phrase, compact], outputs=depen_output)
|
| 124 |
entity_button.click(
|
| 125 |
-
entity, inputs=[text_input, entity_input], outputs=entity_output)
|
| 126 |
-
tok_button.click(
|
| 127 |
-
|
|
|
|
| 128 |
sim_output, sim_text1, sim_text2])
|
| 129 |
span_button.click(
|
| 130 |
-
span, inputs=[text_input, span1, span2, label1, label2], outputs=span_output)
|
| 131 |
|
| 132 |
demo.launch()
|
|
|
|
| 4 |
from spacy.tokens import Span
|
| 5 |
import gradio as gr
|
| 6 |
|
| 7 |
+
DEFAULT_MODEL = "en_core_web"
|
| 8 |
DEFAULT_TEXT = "David Bowie moved to the US in 1974, initially staying in New York City before settling in Los Angeles."
|
| 9 |
DEFAULT_TOK_ATTR = ['idx', 'text', 'pos_', 'lemma_', 'shape_', 'dep_']
|
| 10 |
DEFAULT_ENTS = ['CARDINAL', 'DATE', 'EVENT', 'FAC', 'GPE', 'LANGUAGE', 'LAW', 'LOC', 'MONEY',
|
| 11 |
'NORP', 'ORDINAL', 'ORG', 'PERCENT', 'PERSON', 'PRODUCT', 'QUANTITY', 'TIME', 'WORK_OF_ART']
|
| 12 |
|
|
|
|
|
|
|
| 13 |
|
| 14 |
+
def get_all_models():
|
| 15 |
+
with open("requirements.txt") as f:
|
| 16 |
+
content = f.readlines()
|
| 17 |
+
models = []
|
| 18 |
+
for line in content:
|
| 19 |
+
if "huggingface.co" in line:
|
| 20 |
+
model = "_".join(line.split("/")[4].split("_")[:3])
|
| 21 |
+
if model not in models:
|
| 22 |
+
models.append(model)
|
| 23 |
+
return models
|
| 24 |
|
| 25 |
+
|
| 26 |
+
models = get_all_models()
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def dependency(text, col_punct, col_phrase, compact, model):
|
| 30 |
+
nlp = spacy.load(model + "_sm")
|
| 31 |
doc = nlp(text)
|
| 32 |
options = {"compact": compact, "collapse_phrases": col_phrase,
|
| 33 |
"collapse_punct": col_punct}
|
|
|
|
| 35 |
return html
|
| 36 |
|
| 37 |
|
| 38 |
+
def entity(text, ents, model):
|
| 39 |
+
nlp = spacy.load(model + "_sm")
|
| 40 |
doc = nlp(text)
|
| 41 |
options = {"ents": ents}
|
| 42 |
html = displacy.render(doc, style="ent", options=options)
|
| 43 |
return html
|
| 44 |
|
| 45 |
|
| 46 |
+
def token(text, attributes, model):
|
| 47 |
+
nlp = spacy.load(model + "_sm")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
data = []
|
| 49 |
doc = nlp(text)
|
| 50 |
for tok in doc:
|
|
|
|
| 55 |
return data
|
| 56 |
|
| 57 |
|
| 58 |
+
def vectors(text, model):
|
| 59 |
+
nlp = spacy.load(model + "_md")
|
| 60 |
+
doc = nlp(text)
|
| 61 |
n_chunks = [chunk for chunk in doc.noun_chunks]
|
| 62 |
words = [tok for tok in doc if not tok.is_stop and tok.pos_ not in [
|
| 63 |
'PUNCT', "PROPN"]]
|
|
|
|
| 66 |
return round(choice[0].similarity(choice[1]), 2), choice[0].text, choice[1].text
|
| 67 |
|
| 68 |
|
| 69 |
+
def span(text, span1, span2, label1, label2, model):
|
| 70 |
+
nlp = spacy.load(model + "_sm")
|
| 71 |
doc = nlp(text)
|
| 72 |
idx1_1 = 0
|
| 73 |
idx1_2 = 0
|
|
|
|
| 100 |
demo = gr.Blocks()
|
| 101 |
|
| 102 |
with demo:
|
|
|
|
| 103 |
text_input = gr.Textbox(value=DEFAULT_TEXT, interactive=True)
|
| 104 |
+
model_input = gr.Dropdown(
|
| 105 |
+
choices=models, value=DEFAULT_MODEL, interactive=True)
|
| 106 |
with gr.Tabs():
|
| 107 |
with gr.TabItem("Dependency"):
|
| 108 |
col_punct = gr.Checkbox(label="Collapse Punctuation", value=True)
|
|
|
|
| 115 |
entity_output = gr.HTML()
|
| 116 |
entity_button = gr.Button("Generate")
|
| 117 |
with gr.TabItem("Tokens"):
|
| 118 |
+
with gr.Column():
|
| 119 |
+
tok_input = gr.CheckboxGroup(
|
| 120 |
+
DEFAULT_TOK_ATTR, value=DEFAULT_TOK_ATTR)
|
| 121 |
+
tok_output = gr.Dataframe(
|
| 122 |
+
headers=DEFAULT_TOK_ATTR, overflow_row_behaviour="paginate")
|
| 123 |
tok_button = gr.Button("Generate")
|
| 124 |
with gr.TabItem("Similarity"):
|
| 125 |
sim_text1 = gr.Textbox(value="David Bowie", label="Chosen")
|
|
|
|
| 127 |
sim_output = gr.Textbox(value="0.09", label="Similarity Score")
|
| 128 |
sim_button = gr.Button("Generate")
|
| 129 |
with gr.TabItem("Spans"):
|
| 130 |
+
with gr.Row():
|
| 131 |
+
span1 = gr.Textbox(value="David Bowie", label="Span 1")
|
| 132 |
+
label1 = gr.Textbox(value="Name",
|
| 133 |
+
label="Label for Span 1")
|
| 134 |
+
with gr.Row():
|
| 135 |
+
span2 = gr.Textbox(value="David", label="Span 2")
|
| 136 |
+
label2 = gr.Textbox(value="First",
|
| 137 |
+
label="Label for Span 2")
|
| 138 |
span_output = gr.HTML()
|
| 139 |
span_button = gr.Button("Generate")
|
| 140 |
|
| 141 |
depen_button.click(dependency, inputs=[
|
| 142 |
+
text_input, col_punct, col_phrase, compact, model_input], outputs=depen_output)
|
| 143 |
entity_button.click(
|
| 144 |
+
entity, inputs=[text_input, entity_input, model_input], outputs=entity_output)
|
| 145 |
+
tok_button.click(
|
| 146 |
+
token, inputs=[text_input, tok_input, model_input], outputs=tok_output)
|
| 147 |
+
sim_button.click(vectors, inputs=[text_input, model_input], outputs=[
|
| 148 |
sim_output, sim_text1, sim_text2])
|
| 149 |
span_button.click(
|
| 150 |
+
span, inputs=[text_input, span1, span2, label1, label2, model_input], outputs=span_output)
|
| 151 |
|
| 152 |
demo.launch()
|
requirements.txt
CHANGED
|
@@ -1,8 +1,94 @@
|
|
| 1 |
|
| 2 |
-
en-core-web-md @ https://github.com/explosion/spacy-models/releases/download/en_core_web_md-3.3.0/en_core_web_md-3.3.0-py3-none-any.whl
|
| 3 |
-
en-core-web-sm @ https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.3.0/en_core_web_sm-3.3.0-py3-none-any.whl
|
| 4 |
-
fastapi==0.78.0
|
| 5 |
gradio==3.0.18
|
| 6 |
spacy==3.3.1
|
| 7 |
-
|
| 8 |
-
spacy-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
|
|
|
|
|
|
|
|
|
|
| 2 |
gradio==3.0.18
|
| 3 |
spacy==3.3.1
|
| 4 |
+
|
| 5 |
+
https://huggingface.co/spacy/ca_core_news_lg/resolve/main/ca_core_news_lg-any-py3-none-any.whl
|
| 6 |
+
https://huggingface.co/spacy/ca_core_news_md/resolve/main/ca_core_news_md-any-py3-none-any.whl
|
| 7 |
+
https://huggingface.co/spacy/ca_core_news_sm/resolve/main/ca_core_news_sm-any-py3-none-any.whl
|
| 8 |
+
https://huggingface.co/spacy/ca_core_news_trf/resolve/main/ca_core_news_trf-any-py3-none-any.whl
|
| 9 |
+
|
| 10 |
+
https://huggingface.co/spacy/da_core_news_lg/resolve/main/da_core_news_lg-any-py3-none-any.whl
|
| 11 |
+
https://huggingface.co/spacy/da_core_news_md/resolve/main/da_core_news_md-any-py3-none-any.whl
|
| 12 |
+
https://huggingface.co/spacy/da_core_news_sm/resolve/main/da_core_news_sm-any-py3-none-any.whl
|
| 13 |
+
https://huggingface.co/spacy/da_core_news_trf/resolve/main/da_core_news_trf-any-py3-none-any.whl
|
| 14 |
+
|
| 15 |
+
https://huggingface.co/spacy/de_core_news_lg/resolve/main/de_core_news_lg-any-py3-none-any.whl
|
| 16 |
+
https://huggingface.co/spacy/de_core_news_md/resolve/main/de_core_news_md-any-py3-none-any.whl
|
| 17 |
+
https://huggingface.co/spacy/de_core_news_sm/resolve/main/de_core_news_sm-any-py3-none-any.whl
|
| 18 |
+
https://huggingface.co/spacy/de_dep_news_trf/resolve/main/de_dep_news_trf-any-py3-none-any.whl
|
| 19 |
+
|
| 20 |
+
https://huggingface.co/spacy/el_core_news_lg/resolve/main/el_core_news_lg-any-py3-none-any.whl
|
| 21 |
+
https://huggingface.co/spacy/el_core_news_md/resolve/main/el_core_news_md-any-py3-none-any.whl
|
| 22 |
+
https://huggingface.co/spacy/el_core_news_sm/resolve/main/el_core_news_sm-any-py3-none-any.whl
|
| 23 |
+
|
| 24 |
+
https://huggingface.co/spacy/en_core_web_lg/resolve/main/en_core_web_lg-any-py3-none-any.whl
|
| 25 |
+
https://huggingface.co/spacy/en_core_web_md/resolve/main/en_core_web_md-any-py3-none-any.whl
|
| 26 |
+
https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl
|
| 27 |
+
https://huggingface.co/spacy/en_core_web_trf/resolve/main/en_core_web_trf-any-py3-none-any.whl
|
| 28 |
+
|
| 29 |
+
https://huggingface.co/spacy/es_core_news_lg/resolve/main/es_core_news_lg-any-py3-none-any.whl
|
| 30 |
+
https://huggingface.co/spacy/es_core_news_md/resolve/main/es_core_news_md-any-py3-none-any.whl
|
| 31 |
+
https://huggingface.co/spacy/es_core_news_sm/resolve/main/es_core_news_sm-any-py3-none-any.whl
|
| 32 |
+
https://huggingface.co/spacy/es_dep_news_trf/resolve/main/es_dep_news_trf-any-py3-none-any.whl
|
| 33 |
+
|
| 34 |
+
https://huggingface.co/spacy/fi_core_news_lg/resolve/main/fi_core_news_lg-any-py3-none-any.whl
|
| 35 |
+
https://huggingface.co/spacy/fi_core_news_md/resolve/main/fi_core_news_md-any-py3-none-any.whl
|
| 36 |
+
https://huggingface.co/spacy/fi_core_news_sm/resolve/main/fi_core_news_sm-any-py3-none-any.whl
|
| 37 |
+
|
| 38 |
+
https://huggingface.co/spacy/fr_core_news_lg/resolve/main/fr_core_news_lg-any-py3-none-any.whl
|
| 39 |
+
https://huggingface.co/spacy/fr_core_news_md/resolve/main/fr_core_news_md-any-py3-none-any.whl
|
| 40 |
+
https://huggingface.co/spacy/fr_core_news_sm/resolve/main/fr_core_news_sm-any-py3-none-any.whl
|
| 41 |
+
https://huggingface.co/spacy/fr_dep_news_trf/resolve/main/fr_dep_news_trf-any-py3-none-any.whl
|
| 42 |
+
|
| 43 |
+
https://huggingface.co/spacy/it_core_news_lg/resolve/main/it_core_news_lg-any-py3-none-any.whl
|
| 44 |
+
https://huggingface.co/spacy/it_core_news_md/resolve/main/it_core_news_md-any-py3-none-any.whl
|
| 45 |
+
https://huggingface.co/spacy/it_core_news_sm/resolve/main/it_core_news_sm-any-py3-none-any.whl
|
| 46 |
+
|
| 47 |
+
https://huggingface.co/spacy/ja_core_news_lg/resolve/main/ja_core_news_lg-any-py3-none-any.whl
|
| 48 |
+
https://huggingface.co/spacy/ja_core_news_md/resolve/main/ja_core_news_md-any-py3-none-any.whl
|
| 49 |
+
https://huggingface.co/spacy/ja_core_news_sm/resolve/main/ja_core_news_sm-any-py3-none-any.whl
|
| 50 |
+
|
| 51 |
+
https://huggingface.co/spacy/ko_core_news_lg/resolve/main/ko_core_news_lg-any-py3-none-any.whl
|
| 52 |
+
https://huggingface.co/spacy/ko_core_news_md/resolve/main/ko_core_news_md-any-py3-none-any.whl
|
| 53 |
+
https://huggingface.co/spacy/ko_core_news_sm/resolve/main/ko_core_news_sm-any-py3-none-any.whl
|
| 54 |
+
|
| 55 |
+
https://huggingface.co/spacy/lt_core_news_lg/resolve/main/lt_core_news_lg-any-py3-none-any.whl
|
| 56 |
+
https://huggingface.co/spacy/lt_core_news_md/resolve/main/lt_core_news_md-any-py3-none-any.whl
|
| 57 |
+
https://huggingface.co/spacy/lt_core_news_sm/resolve/main/lt_core_news_sm-any-py3-none-any.whl
|
| 58 |
+
|
| 59 |
+
https://huggingface.co/spacy/mk_core_news_lg/resolve/main/mk_core_news_lg-any-py3-none-any.whl
|
| 60 |
+
https://huggingface.co/spacy/mk_core_news_md/resolve/main/mk_core_news_md-any-py3-none-any.whl
|
| 61 |
+
https://huggingface.co/spacy/mk_core_news_sm/resolve/main/mk_core_news_sm-any-py3-none-any.whl
|
| 62 |
+
|
| 63 |
+
https://huggingface.co/spacy/nb_core_news_lg/resolve/main/nb_core_news_lg-any-py3-none-any.whl
|
| 64 |
+
https://huggingface.co/spacy/nb_core_news_md/resolve/main/nb_core_news_md-any-py3-none-any.whl
|
| 65 |
+
https://huggingface.co/spacy/nb_core_news_sm/resolve/main/nb_core_news_sm-any-py3-none-any.whl
|
| 66 |
+
|
| 67 |
+
https://huggingface.co/spacy/nl_core_news_lg/resolve/main/nl_core_news_lg-any-py3-none-any.whl
|
| 68 |
+
https://huggingface.co/spacy/nl_core_news_md/resolve/main/nl_core_news_md-any-py3-none-any.whl
|
| 69 |
+
https://huggingface.co/spacy/nl_core_news_sm/resolve/main/nl_core_news_sm-any-py3-none-any.whl
|
| 70 |
+
|
| 71 |
+
https://huggingface.co/spacy/pl_core_news_lg/resolve/main/pl_core_news_lg-any-py3-none-any.whl
|
| 72 |
+
https://huggingface.co/spacy/pl_core_news_md/resolve/main/pl_core_news_md-any-py3-none-any.whl
|
| 73 |
+
https://huggingface.co/spacy/pl_core_news_sm/resolve/main/pl_core_news_sm-any-py3-none-any.whl
|
| 74 |
+
|
| 75 |
+
https://huggingface.co/spacy/pt_core_news_lg/resolve/main/pt_core_news_lg-any-py3-none-any.whl
|
| 76 |
+
https://huggingface.co/spacy/pt_core_news_md/resolve/main/pt_core_news_md-any-py3-none-any.whl
|
| 77 |
+
https://huggingface.co/spacy/pt_core_news_sm/resolve/main/pt_core_news_sm-any-py3-none-any.whl
|
| 78 |
+
|
| 79 |
+
https://huggingface.co/spacy/ro_core_news_lg/resolve/main/ro_core_news_lg-any-py3-none-any.whl
|
| 80 |
+
https://huggingface.co/spacy/ro_core_news_md/resolve/main/ro_core_news_md-any-py3-none-any.whl
|
| 81 |
+
https://huggingface.co/spacy/ro_core_news_sm/resolve/main/ro_core_news_sm-any-py3-none-any.whl
|
| 82 |
+
|
| 83 |
+
https://huggingface.co/spacy/ru_core_news_lg/resolve/main/ru_core_news_lg-any-py3-none-any.whl
|
| 84 |
+
https://huggingface.co/spacy/ru_core_news_md/resolve/main/ru_core_news_md-any-py3-none-any.whl
|
| 85 |
+
https://huggingface.co/spacy/ru_core_news_sm/resolve/main/ru_core_news_sm-any-py3-none-any.whl
|
| 86 |
+
|
| 87 |
+
https://huggingface.co/spacy/sv_core_news_lg/resolve/main/sv_core_news_lg-any-py3-none-any.whl
|
| 88 |
+
https://huggingface.co/spacy/sv_core_news_md/resolve/main/sv_core_news_md-any-py3-none-any.whl
|
| 89 |
+
https://huggingface.co/spacy/sv_core_news_sm/resolve/main/sv_core_news_sm-any-py3-none-any.whl
|
| 90 |
+
|
| 91 |
+
https://huggingface.co/spacy/zh_core_web_lg/resolve/main/zh_core_web_lg-any-py3-none-any.whl
|
| 92 |
+
https://huggingface.co/spacy/zh_core_web_md/resolve/main/zh_core_web_md-any-py3-none-any.whl
|
| 93 |
+
https://huggingface.co/spacy/zh_core_web_sm/resolve/main/zh_core_web_sm-any-py3-none-any.whl
|
| 94 |
+
https://huggingface.co/spacy/zh_core_web_trf/resolve/main/zh_core_web_trf-any-py3-none-any.whl
|