Spaces:
Sleeping
Sleeping
Update helpers.py
Browse files- helpers.py +215 -214
helpers.py
CHANGED
|
@@ -1,214 +1,215 @@
|
|
| 1 |
-
import re
|
| 2 |
-
import os
|
| 3 |
-
import simple_icd_10_cm as cm
|
| 4 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 5 |
-
# from openai import OpenAI
|
| 6 |
-
from prompt_template import *
|
| 7 |
-
from langchain_groq import ChatGroq
|
| 8 |
-
from groq import Groq
|
| 9 |
-
from dotenv import load_dotenv
|
| 10 |
-
import csv
|
| 11 |
-
import time
|
| 12 |
-
load_dotenv()
|
| 13 |
-
|
| 14 |
-
os.environ["LANGCHAIN_TRACING_V2"]="true"
|
| 15 |
-
groq_api_key=os.environ.get('GROQ_API_KEY')
|
| 16 |
-
os.
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
Spanish
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
cleaned_text =
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
cleaned_text =
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
for
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import os
|
| 3 |
+
import simple_icd_10_cm as cm
|
| 4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 5 |
+
# from openai import OpenAI
|
| 6 |
+
from prompt_template import *
|
| 7 |
+
from langchain_groq import ChatGroq
|
| 8 |
+
from groq import Groq
|
| 9 |
+
from dotenv import load_dotenv
|
| 10 |
+
import csv
|
| 11 |
+
import time
|
| 12 |
+
load_dotenv()
|
| 13 |
+
|
| 14 |
+
os.environ["LANGCHAIN_TRACING_V2"]="true"
|
| 15 |
+
# groq_api_key=os.environ.get('GROQ_API_KEY')
|
| 16 |
+
groq_api_key=os.getenv('GROQ_API_KEY')
|
| 17 |
+
os.environ["LANGCHAIN_ENDPOINT"]="https://api.smith.langchain.com"
|
| 18 |
+
LANGCHAIN_API_KEY=os.environ.get("LANGCHAIN_API_KEY")
|
| 19 |
+
|
| 20 |
+
client = Groq()
|
| 21 |
+
|
| 22 |
+
CHAPTER_LIST = cm.chapter_list
|
| 23 |
+
|
| 24 |
+
def construct_translation_prompt(medical_note):
|
| 25 |
+
"""
|
| 26 |
+
Construct a prompt template for translating spanish medical notes to english.
|
| 27 |
+
|
| 28 |
+
Args:
|
| 29 |
+
medical_note (str): The medical case note.
|
| 30 |
+
|
| 31 |
+
Returns:
|
| 32 |
+
str: A structured template ready to be used as input for a language model.
|
| 33 |
+
"""
|
| 34 |
+
translation_prompt = """You are an expert Spanish-to-English translator. You are provided with a clinical note written in Spanish.
|
| 35 |
+
You must translate the note into English. You must ensure that you properly translate the medical and technical terms from Spanish to English without any mistakes.
|
| 36 |
+
Spanish Medical Note:
|
| 37 |
+
{medical_note}"""
|
| 38 |
+
|
| 39 |
+
return translation_prompt.format(medical_note = medical_note)
|
| 40 |
+
|
| 41 |
+
def build_translation_prompt(input_note, system_prompt=""):
|
| 42 |
+
"""
|
| 43 |
+
Build a zero-shot prompt for translating spanish medical notes to english.
|
| 44 |
+
|
| 45 |
+
Args:
|
| 46 |
+
input_note (str): The input note or query.
|
| 47 |
+
system_prompt (str): Optional initial system prompt or instruction.
|
| 48 |
+
|
| 49 |
+
Returns:
|
| 50 |
+
list of dict: A structured list of dictionaries defining the role and content of each message.
|
| 51 |
+
"""
|
| 52 |
+
input_prompt = construct_translation_prompt(input_note)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
return [{"role": "system", "content": system_prompt}, {"role": "user", "content": input_prompt}]
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def remove_extra_spaces(text):
|
| 59 |
+
"""
|
| 60 |
+
Remove extra spaces from a given text.
|
| 61 |
+
|
| 62 |
+
Args:
|
| 63 |
+
text (str): The original text string.
|
| 64 |
+
|
| 65 |
+
Returns:
|
| 66 |
+
str: The cleaned text with extra spaces removed.
|
| 67 |
+
"""
|
| 68 |
+
return re.sub(r'\s+', ' ', text).strip()
|
| 69 |
+
|
| 70 |
+
def remove_last_parenthesis(text):
|
| 71 |
+
"""
|
| 72 |
+
Removes the last occurrence of content within parentheses from the provided text.
|
| 73 |
+
|
| 74 |
+
Args:
|
| 75 |
+
text (str): The input string from which to remove the last parentheses and its content.
|
| 76 |
+
|
| 77 |
+
Returns:
|
| 78 |
+
str: The modified string with the last parentheses content removed.
|
| 79 |
+
"""
|
| 80 |
+
pattern = r'\([^()]*\)(?!.*\([^()]*\))'
|
| 81 |
+
cleaned_text = re.sub(pattern, '', text)
|
| 82 |
+
return cleaned_text
|
| 83 |
+
|
| 84 |
+
def format_code_descriptions(text, model_name):
|
| 85 |
+
"""
|
| 86 |
+
Format the ICD-10 code descriptions by removing content inside brackets and extra spaces.
|
| 87 |
+
|
| 88 |
+
Args:
|
| 89 |
+
text (str): The original text containing ICD-10 code descriptions.
|
| 90 |
+
|
| 91 |
+
Returns:
|
| 92 |
+
str: The cleaned text with content in brackets removed and extra spaces cleaned up.
|
| 93 |
+
"""
|
| 94 |
+
pattern = r'\([^()]*\)(?!.*\([^()]*\))'
|
| 95 |
+
cleaned_text = remove_last_parenthesis(text)
|
| 96 |
+
cleaned_text = remove_extra_spaces(cleaned_text)
|
| 97 |
+
|
| 98 |
+
return cleaned_text
|
| 99 |
+
|
| 100 |
+
def construct_prompt_template(case_note, code_descriptions, model_name):
|
| 101 |
+
"""
|
| 102 |
+
Construct a prompt template for evaluating ICD-10 code descriptions against a given case note.
|
| 103 |
+
|
| 104 |
+
Args:
|
| 105 |
+
case_note (str): The medical case note.
|
| 106 |
+
code_descriptions (str): The ICD-10 code descriptions formatted as a single string.
|
| 107 |
+
|
| 108 |
+
Returns:
|
| 109 |
+
str: A structured template ready to be used as input for a language model.
|
| 110 |
+
"""
|
| 111 |
+
template = prompt_template_dict[model_name]
|
| 112 |
+
|
| 113 |
+
return template.format(note=case_note, code_descriptions=code_descriptions)
|
| 114 |
+
|
| 115 |
+
def build_zero_shot_prompt(input_note, descriptions, model_name, system_prompt=""):
|
| 116 |
+
"""
|
| 117 |
+
Build a zero-shot classification prompt with system and user roles for a language model.
|
| 118 |
+
|
| 119 |
+
Args:
|
| 120 |
+
input_note (str): The input note or query.
|
| 121 |
+
descriptions (list of str): List of ICD-10 code descriptions.
|
| 122 |
+
system_prompt (str): Optional initial system prompt or instruction.
|
| 123 |
+
|
| 124 |
+
Returns:
|
| 125 |
+
list of dict: A structured list of dictionaries defining the role and content of each message.
|
| 126 |
+
"""
|
| 127 |
+
if model_name == "llama3-70b-8192":
|
| 128 |
+
code_descriptions = "\n".join(["* " + x for x in descriptions])
|
| 129 |
+
else:
|
| 130 |
+
|
| 131 |
+
code_descriptions = "\n".join(["* " + x for x in descriptions])
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
input_prompt = construct_prompt_template(input_note, code_descriptions, model_name)
|
| 135 |
+
return [{"role": "system", "content": system_prompt}, {"role": "user", "content": input_prompt}]
|
| 136 |
+
|
| 137 |
+
def get_response(messages, model_name, temperature=0.0, max_tokens=500):
|
| 138 |
+
"""
|
| 139 |
+
Obtain responses from a specified model via the chat-completions API.
|
| 140 |
+
|
| 141 |
+
Args:
|
| 142 |
+
messages (list of dict): List of messages structured for API input.
|
| 143 |
+
model_name (str): Identifier for the model to query.
|
| 144 |
+
temperature (float): Controls randomness of response, where 0 is deterministic.
|
| 145 |
+
max_tokens (int): Limit on the number of tokens in the response.
|
| 146 |
+
|
| 147 |
+
Returns:
|
| 148 |
+
str: The content of the response message from the model.
|
| 149 |
+
"""
|
| 150 |
+
response = client.chat.completions.create(
|
| 151 |
+
model=model_name,
|
| 152 |
+
messages=messages,
|
| 153 |
+
temperature=temperature,
|
| 154 |
+
max_tokens=max_tokens
|
| 155 |
+
)
|
| 156 |
+
return response.choices[0].message.content
|
| 157 |
+
|
| 158 |
+
def remove_noisy_prefix(text):
|
| 159 |
+
# Removing numbers or letters followed by a dot and optional space at the beginning of the string
|
| 160 |
+
cleaned_text = text.replace("* ", "").strip()
|
| 161 |
+
cleaned_text = re.sub(r"^\s*\w+\.\s*", "", cleaned_text)
|
| 162 |
+
return cleaned_text.strip()
|
| 163 |
+
def parse_outputs(output, code_description_map, model_name):
|
| 164 |
+
"""
|
| 165 |
+
Parse model outputs to confirm ICD-10 codes based on a given description map.
|
| 166 |
+
|
| 167 |
+
Args:
|
| 168 |
+
output (str): The model output containing confirmations.
|
| 169 |
+
code_description_map (dict): Mapping of descriptions to ICD-10 codes.
|
| 170 |
+
|
| 171 |
+
Returns:
|
| 172 |
+
list of dict: A list of confirmed codes and their descriptions.
|
| 173 |
+
"""
|
| 174 |
+
confirmed_codes = []
|
| 175 |
+
split_outputs = [x for x in output.split("\n") if x]
|
| 176 |
+
for item in split_outputs:
|
| 177 |
+
try:
|
| 178 |
+
code_description, confirmation = item.split(":", 1)
|
| 179 |
+
# print(confirmation)
|
| 180 |
+
cnf,fact = confirmation.split(",", 1)
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
if model_name == "llama3-70b-8192":
|
| 184 |
+
code_description = remove_noisy_prefix(code_description)
|
| 185 |
+
else:
|
| 186 |
+
code_description = remove_noisy_prefix(code_description)
|
| 187 |
+
|
| 188 |
+
if confirmation.lower().strip().startswith("yes"):
|
| 189 |
+
try:
|
| 190 |
+
|
| 191 |
+
code = code_description_map[code_description]
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
confirmed_codes.append({"ICD Code": code, "Code Description": code_description,"Evidence From Notes":fact})
|
| 195 |
+
|
| 196 |
+
except Exception as e:
|
| 197 |
+
# print(str(e) + " Here")
|
| 198 |
+
continue
|
| 199 |
+
except:
|
| 200 |
+
continue
|
| 201 |
+
return confirmed_codes
|
| 202 |
+
|
| 203 |
+
def get_name_and_description(code, model_name):
|
| 204 |
+
"""
|
| 205 |
+
Retrieve the name and description of an ICD-10 code.
|
| 206 |
+
|
| 207 |
+
Args:
|
| 208 |
+
code (str): The ICD-10 code.
|
| 209 |
+
|
| 210 |
+
Returns:
|
| 211 |
+
tuple: A tuple containing the formatted description and the name of the code.
|
| 212 |
+
"""
|
| 213 |
+
full_data = cm.get_full_data(code).split("\n")
|
| 214 |
+
return format_code_descriptions(full_data[3], model_name), full_data[1]
|
| 215 |
+
|