Spaces:
Build error
Build error
| import gradio as gr | |
| from transformers import AutoTokenizer | |
| from llava import LlavaForConditionalGeneration | |
| # Load the LLaVA model and tokenizer from the Hub | |
| model = LlavaForConditionalGeneration.from_pretrained("liuhaotian/llava-v1.6-34b") | |
| tokenizer = AutoTokenizer.from_pretrained("liuhaotian/llava-v1.6-34b") | |
| # Define a function to generate a response given an input text and an optional image URL | |
| def generate_response(text, image_url=None): | |
| # Encode the input text and image URL as a single input_ids tensor | |
| if image_url: | |
| input_ids = tokenizer(f"{text} <img>{image_url}</img>", return_tensors="pt").input_ids | |
| else: | |
| input_ids = tokenizer(text, return_tensors="pt").input_ids | |
| # Generate a response using beam search with a length penalty of 0.8 | |
| output_ids = model.generate(input_ids, max_length=256, num_beams=5, length_penalty=0.8) | |
| # Decode the output_ids tensor into a string | |
| output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
| # Return the output text | |
| return output_text | |
| # Use the HuggingFaceTGIGenerator class to automatically map inputs and outputs to Gradio components | |
| gr.Interface(generate_response, gr.HuggingFaceTGIGenerator(model), "text").launch() | |