Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,117 +1,27 @@
|
|
| 1 |
-
from pymed import PubMed
|
| 2 |
-
from typing import List
|
| 3 |
-
from haystack import component
|
| 4 |
-
from haystack import Document
|
| 5 |
-
from haystack.components.generators import HuggingFaceTGIGenerator
|
| 6 |
-
from dotenv import load_dotenv
|
| 7 |
-
import os
|
| 8 |
-
from haystack import Pipeline
|
| 9 |
-
from haystack.components.builders.prompt_builder import PromptBuilder
|
| 10 |
import gradio as gr
|
| 11 |
-
import
|
| 12 |
-
|
| 13 |
-
#
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
print(e)
|
| 38 |
-
print(f"Couldn't fetch articles for queries: {queries}" )
|
| 39 |
-
results = {'articles': articles}
|
| 40 |
-
return results
|
| 41 |
-
|
| 42 |
-
keyword_llm = HuggingFaceTGIGenerator("liuhaotian/llava-v1.6-mistral-7b")
|
| 43 |
-
keyword_llm.warm_up()
|
| 44 |
-
|
| 45 |
-
llm = HuggingFaceTGIGenerator("liuhaotian/llava-v1.6-mistral-7b")
|
| 46 |
-
llm.warm_up()
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
keyword_prompt_template = """
|
| 50 |
-
Your task is to convert the following question into 3 keywords that can be used to find relevant medical research papers on PubMed.
|
| 51 |
-
Here is an examples:
|
| 52 |
-
question: "What are the latest treatments for major depressive disorder?"
|
| 53 |
-
keywords:
|
| 54 |
-
Antidepressive Agents
|
| 55 |
-
Depressive Disorder, Major
|
| 56 |
-
Treatment-Resistant depression
|
| 57 |
-
---
|
| 58 |
-
question: {{ question }}
|
| 59 |
-
keywords:
|
| 60 |
-
"""
|
| 61 |
-
|
| 62 |
-
prompt_template = """
|
| 63 |
-
Answer the question truthfully based on the given documents.
|
| 64 |
-
If the documents don't contain an answer, use your existing knowledge base.
|
| 65 |
-
q: {{ question }}
|
| 66 |
-
Articles:
|
| 67 |
-
{% for article in articles %}
|
| 68 |
-
{{article.content}}
|
| 69 |
-
keywords: {{article.meta['keywords']}}
|
| 70 |
-
title: {{article.meta['title']}}
|
| 71 |
-
{% endfor %}
|
| 72 |
-
"""
|
| 73 |
-
|
| 74 |
-
keyword_prompt_builder = PromptBuilder(template=keyword_prompt_template)
|
| 75 |
-
|
| 76 |
-
prompt_builder = PromptBuilder(template=prompt_template)
|
| 77 |
-
fetcher = PubMedFetcher()
|
| 78 |
-
|
| 79 |
-
pipe = Pipeline()
|
| 80 |
-
|
| 81 |
-
pipe.add_component("keyword_prompt_builder", keyword_prompt_builder)
|
| 82 |
-
pipe.add_component("keyword_llm", keyword_llm)
|
| 83 |
-
pipe.add_component("pubmed_fetcher", fetcher)
|
| 84 |
-
pipe.add_component("prompt_builder", prompt_builder)
|
| 85 |
-
pipe.add_component("llm", llm)
|
| 86 |
-
|
| 87 |
-
pipe.connect("keyword_prompt_builder.prompt", "keyword_llm.prompt")
|
| 88 |
-
pipe.connect("keyword_llm.replies", "pubmed_fetcher.queries")
|
| 89 |
-
|
| 90 |
-
pipe.connect("pubmed_fetcher.articles", "prompt_builder.articles")
|
| 91 |
-
pipe.connect("prompt_builder.prompt", "llm.prompt")
|
| 92 |
-
|
| 93 |
-
def ask(question):
|
| 94 |
-
output = pipe.run(data={"keyword_prompt_builder":{"question":question},
|
| 95 |
-
"prompt_builder":{"question": question},
|
| 96 |
-
"llm":{"generation_kwargs": {"max_new_tokens": 500}}})
|
| 97 |
-
print(question)
|
| 98 |
-
print(output['llm']['replies'][0])
|
| 99 |
-
return output['llm']['replies'][0]
|
| 100 |
-
|
| 101 |
-
# result = ask("How are mRNA vaccines being used for cancer treatment?")
|
| 102 |
-
|
| 103 |
-
# print(result)
|
| 104 |
-
|
| 105 |
-
iface = gr.Interface(fn=ask, inputs=gr.Textbox(
|
| 106 |
-
value="How are mRNA vaccines being used for cancer treatment?"),
|
| 107 |
-
outputs="markdown",
|
| 108 |
-
title="LLM Augmented Q&A over PubMed Search Engine",
|
| 109 |
-
description="Ask a question about BioMedical and get an answer from a friendly AI assistant.",
|
| 110 |
-
examples=[["How are mRNA vaccines being used for cancer treatment?"],
|
| 111 |
-
["Suggest me some Case Studies related to Pneumonia."],
|
| 112 |
-
["Tell me about HIV AIDS."],["Suggest some case studies related to Auto Immune Disorders."],
|
| 113 |
-
["How to treat a COVID infected Patient?"]],
|
| 114 |
-
theme=gr.themes.Soft(),
|
| 115 |
-
allow_flagging="never",)
|
| 116 |
-
|
| 117 |
-
iface.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
|
| 4 |
+
# Load the quantized model and tokenizer from the Hub
|
| 5 |
+
model = AutoModelForCausalLM.from_pretrained("my-quantized-llava-model")
|
| 6 |
+
tokenizer = AutoTokenizer.from_pretrained("my-quantized-llava-model")
|
| 7 |
+
|
| 8 |
+
# Define a function to generate a response given an input text and an optional image URL
|
| 9 |
+
def generate_response(text, image_url=None):
|
| 10 |
+
# Encode the input text and image URL as a single input_ids tensor
|
| 11 |
+
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Roadrunner_Petrochelidon_pyrrhonota.jpg/1200px-Roadrunner_Petrochelidon_pyrrhonota.jpg"
|
| 12 |
+
if image_url:
|
| 13 |
+
input_ids = tokenizer(f"{text} <img>{image_url}</img>", return_tensors="pt").input_ids
|
| 14 |
+
else:
|
| 15 |
+
input_ids = tokenizer(text, return_tensors="pt").input_ids
|
| 16 |
+
|
| 17 |
+
# Generate a response using beam search with a length penalty of 0.8
|
| 18 |
+
output_ids = model.generate(input_ids, max_length=256, num_beams=5, length_penalty=0.8)
|
| 19 |
+
|
| 20 |
+
# Decode the output_ids tensor into a string
|
| 21 |
+
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 22 |
+
|
| 23 |
+
# Return the output text
|
| 24 |
+
return output_text
|
| 25 |
+
|
| 26 |
+
# Use the HuggingFaceTGIGenerator class to automatically map inputs and outputs to Gradio components
|
| 27 |
+
gr.Interface(generate_response, gr.HuggingFaceTGIGenerator(model), "text").launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|