Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,304 Bytes
6852edb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
from functools import cached_property, reduce
from typing import List, Optional, Union
from copy import deepcopy
from collections import defaultdict
import numpy as np
import torch
import torchaudio
import torch.nn.functional as F
from hyperpyyaml import load_hyperpyyaml
from stepvocoder.cosyvoice2.cli.frontend import CosyVoiceFrontEnd
from stepvocoder.cosyvoice2.flow.flow import CausalMaskedDiffWithXvec
from stepvocoder.cosyvoice2.hifigan.generator import HiFTGenerator
from stepvocoder.cosyvoice2.bigvgan.bigvgan import BigVGAN
# from stepvocoder.cosyvoice2.utils.common import fade_in_out
import threading
"""perform fade_in_out in tensor style
"""
def fade_in_out(fade_in_mel:torch.Tensor, fade_out_mel:torch.Tensor, window:torch.Tensor):
mel_overlap_len = int(window.shape[0] / 2)
fade_in_mel = fade_in_mel.clone()
fade_in_mel[..., :mel_overlap_len] = \
fade_in_mel[..., :mel_overlap_len] * window[:mel_overlap_len] + \
fade_out_mel[..., -mel_overlap_len:] * window[mel_overlap_len:]
return fade_in_mel
# torch._dynamo.config.cache_size_limit = 128
# torch._dynamo.config.accumulated_cache_size_limit = 128
"""
A wrapper for managing stream caches.
"""
class CosyVoice_stream_impl_(torch.nn.Module):
def __init__(self,
flow: CausalMaskedDiffWithXvec,
hift: Union[HiFTGenerator, BigVGAN],
chunk_size_list: List = [15, 24, 48], # (0.6s, 0.96s, 1.92s)
mel_cache_len: int = 8,
n_timesteps: int = 10, # for both stream/non-stream
):
super().__init__()
self.flow = flow
self.hift = hift
self.n_timesteps = n_timesteps
# hard coded!
# self.sample_rate = hift.sampling_rate
self.token_lookahead = flow.pre_lookahead_len
# stream conf
self.mel_cache_len = mel_cache_len
if isinstance(self.hift, BigVGAN):
# bigvgan use left 3 frames and right 3 frames as context
self.source_cache_len = int((mel_cache_len - 6)* 480) # 50hz mel -> 24k wave
elif isinstance(self.hift, HiFTGenerator):
self.source_cache_len = int(mel_cache_len * 480) # 50hz mel -> 24k wave
else:
raise ValueError(f'unsupported vocoder type {type(self.hift)}')
self.register_buffer('speech_window', torch.from_numpy(np.hamming(2 * self.source_cache_len)), persistent=False)
# session management
self.speech_token_dict = defaultdict(list)
self.chunk_size_list = chunk_size_list
self.chunk_size_dict = {}
self.b_first_chunk_dict = {} # indicate if it's the first chunk of this session
# hifigan cache
self.hift_cache_dict = {}
# model att/cnn cache
self.chunk_cache_dict = {}
self.estimator_prompt_length_dict = {}
# speaker embedding cache
self.spk_embedding_cache_dict = {}
# setup lock
self.setup_lock = threading.Lock()
@cached_property
def device(self):
return next(self.hift.parameters()).device
@cached_property
def dtype(self):
return next(self.hift.parameters()).dtype
"""NOTE Non-stream interface.
"""
def token2wav_nonstream(self,
token: torch.Tensor,
prompt_token: torch.Tensor,
prompt_feat: torch.Tensor,
embedding: torch.Tensor,
):
def _make_len(ts:torch.Tensor):
return torch.tensor([ts.shape[1]], dtype=torch.long, device=ts.device)
# [02, 02, 06, 06, 06] -> [[02, 02, PAD], [06, 06, 06]]
token = self._reshape(
token.squeeze().tolist()
).unsqueeze(0)
prompt_token = self._reshape(
prompt_token.squeeze().tolist()
).unsqueeze(0)
# align prompt mel
prompt_feat = F.interpolate(
prompt_feat.transpose(1, 2),
size=prompt_token.shape[1]*2,
mode='nearest'
).transpose(1, 2)
token, prompt_token, prompt_feat, embedding = map(
lambda ts: ts.to(self.device),
(token, prompt_token, prompt_feat, embedding),
)
# inference flow
mel = self.flow.inference(
token,
_make_len(token),
prompt_token,
_make_len(prompt_token),
prompt_feat.to(self.dtype),
_make_len(prompt_feat),
embedding.to(self.dtype),
self.n_timesteps,
)
# inference vocoder
with torch.no_grad():
if isinstance(self.hift, BigVGAN):
mel = torch.nn.functional.pad(mel, (3,3), mode='reflect')
speech = self.hift.inference(mel).squeeze(0) # [1,1,T] -> [1,T]
elif isinstance(self.hift, HiFTGenerator):
speech, _ = self.hift.inference(mel)
else:
raise ValueError(f'unsupported vocoder type {type(self.hift)}')
speech = speech.cpu().to(torch.float32)
return speech
"""NOTE Internal method, do not call this method!
Handle device & dtype transfer.
"""
def _setup_cache(self,
token: torch.Tensor,
mel: torch.Tensor,
spk: torch.Tensor,
session_id: str,
):
# att/cnn-cache
with self.setup_lock:
cache = self.flow.setup_cache(
token.to(self.device),
mel.to(self.device, self.dtype),
spk.to(self.device, self.dtype),
self.n_timesteps,
)
# 对 cache dict 里的每个 tensor 做 clone().detach()
cache = {k: (v.clone().detach() if isinstance(v, torch.Tensor) else v) for k, v in cache.items()}
self.chunk_cache_dict[session_id] = cache
self.estimator_prompt_length_dict[session_id] = mel.shape[1]
self.b_first_chunk_dict[session_id] = True
# spk embedding
self.spk_embedding_cache_dict[session_id] = spk.to(self.device, self.dtype).clone()
# hift cache
self.hift_cache_dict[session_id] = dict(
mel = torch.zeros(1, mel.shape[2], 0, device=self.device, dtype=self.dtype),
source = torch.zeros(1, 1, 0, device=self.device, dtype=self.dtype),
speech = torch.zeros(1, 0, device=self.device, dtype=self.dtype),
)
return
"""NOTE Internal method, do not call this method!
Handle device transfer.
"""
def _token2wav_stream(self,
token: torch.Tensor,
session_id: str,
last_chunk: bool,
):
assert session_id in self.chunk_cache_dict, 'call setup_cache first to obtain cache'
# fetch cache & speaker embedding
cache = self.chunk_cache_dict[session_id]
embedding = self.spk_embedding_cache_dict[session_id]
# inference this chunk
mel, new_cache = self.flow.inference_chunk(
token.to(self.device), # int64
embedding,
cache,
last_chunk,
self.n_timesteps,
)
# NOTE(sfy) truncate attention cache (prompt_length + 2s left context)
left_context_length = int(2 * 48)
estimator_att_cache = new_cache['estimator_att_cache']
prompt_length = self.estimator_prompt_length_dict[session_id]
if estimator_att_cache.shape[4] > (prompt_length + left_context_length):
new_cache['estimator_att_cache'] = torch.cat([
estimator_att_cache[:, :, :, :, :left_context_length],
estimator_att_cache[:, :, :, :, -prompt_length:],
], dim=4)
self.chunk_cache_dict[session_id] = {k: v.clone().detach() for k, v in new_cache.items()}
# vocoder cache
hift_cache_mel = self.hift_cache_dict[session_id]['mel']
hift_cache_source = self.hift_cache_dict[session_id]['source']
hift_cache_speech = self.hift_cache_dict[session_id]['speech']
mel = torch.concat([hift_cache_mel, mel], dim=2)
# inference vocoder
with torch.no_grad():
if isinstance(self.hift, BigVGAN):
if self.b_first_chunk_dict[session_id] and mel.shape[2] > 0:
print(f'[INFO] first chunk mel len: {mel.shape[2]}')
self.b_first_chunk_dict[session_id] = False
mel = F.pad(mel, (3,0), mode='reflect')
if last_chunk:
mel = F.pad(mel, (0,3), mode='reflect')
speech = self.hift.inference(mel).squeeze(0) # [1,1,T] -> [1,T]
source = torch.zeros(1, 1, 0, device=self.device, dtype=self.dtype) # dummy source
elif isinstance(self.hift, HiFTGenerator):
speech, source = self.hift.inference(mel, hift_cache_source)
# overlap speech smooth
if hift_cache_speech.shape[-1] > 0:
speech = fade_in_out(speech, hift_cache_speech, self.speech_window)
# update vocoder cache
self.hift_cache_dict[session_id] = dict(
mel = mel[..., -self.mel_cache_len:].clone().detach(),
source = source[:, :, -self.source_cache_len:].clone().detach(),
speech = speech[:, -self.source_cache_len:].clone().detach(),
)
if not last_chunk:
speech = speech[:, :-self.source_cache_len]
return speech.cpu().to(torch.float32)
@staticmethod
def _reshape(mix_seq: List[int])->torch.Tensor:
# assert len(mix_seq)%5 == 0, len(mix_seq)
# NOTE add padding to avoid assert error
# (don't care the final speech as it's wrong anyway)
if len(mix_seq)%5 > 0:
pad_len = 5-(len(mix_seq)%5)
mix_seq += [0, 0, 0, 1024, 1024, 1024][-pad_len:]
num_groups = len(mix_seq) // 5
vq02 = reduce(
lambda x, y: x+y,
[mix_seq[i*5: i*5+2] + [1024] for i in range(num_groups)]
)
vq06 = reduce(
lambda x, y: x+y,
[mix_seq[i*5+2: i*5+5] for i in range(num_groups)]
)
vq0206 = torch.stack([
torch.tensor(vq02, dtype=torch.long),
torch.tensor(vq06, dtype=torch.long)-1024+1025,
], dim=1)
return vq0206
"""NOTE Stream interface. Called whenever one token is generated.
NOTE(sfy) not need to transfer device or dtype
This is a specialized version for vq0206, we change the mixed sequence to time-aligned sequence.
eg.: [02, 02, 06, 06, 06] -> [[02, 02, PAD], [06, 06, 06]]
"""
def token2wav_stream(self,
token: List[int], # vq0206 mixed seq tokens
prompt_token: torch.Tensor,
prompt_feat: torch.Tensor,
embedding: torch.Tensor,
session_id: str,
last_chunk: bool,
)->Optional[torch.Tensor]:
# FIXME hard coded
def _mixed_len(l:int):
return (l // 3) * 5
# init chunk size tracking
if session_id not in self.chunk_size_dict:
self.chunk_size_dict[session_id] = deepcopy(self.chunk_size_list)
# add token
self.speech_token_dict[session_id].extend(token)
# waiting to setup cache
mix_token_lookahead_len = _mixed_len(self.token_lookahead)
if session_id not in self.chunk_cache_dict:
if len(self.speech_token_dict[session_id]) >= mix_token_lookahead_len:
# [02, 02, 06, 06, 06] -> [[02, 02, PAD], [06, 06, 06]]
lookahead_token = self._reshape(
self.speech_token_dict[session_id][:mix_token_lookahead_len]
).unsqueeze(0) # (1, t, 2)
prompt_token = self._reshape(
prompt_token.squeeze().tolist()
).unsqueeze(0)
# align prompt mel
prompt_feat = F.interpolate(
prompt_feat.transpose(1, 2),
size=prompt_token.shape[1]*2,
mode='nearest'
).transpose(1, 2)
self._setup_cache(
torch.cat([prompt_token, lookahead_token], dim=1),
prompt_feat,
embedding,
session_id,
)
return None
# deal with remaining tokens
if last_chunk:
this_token = self.speech_token_dict[session_id]
else:
# cut to one chunk
this_token = None
mix_token_chunk_len = _mixed_len(self.chunk_size_dict[session_id][0])
if len(self.speech_token_dict[session_id]) >= (mix_token_chunk_len+mix_token_lookahead_len):
this_token = self.speech_token_dict[session_id][:(mix_token_chunk_len+mix_token_lookahead_len)]
self.speech_token_dict[session_id] = self.speech_token_dict[session_id][mix_token_chunk_len:]
# go synthesis
if this_token is not None:
# [02, 02, 06, 06, 06] -> [[02, 02, PAD], [06, 06, 06]]
this_token = self._reshape(this_token).unsqueeze(0)
this_speech = self._token2wav_stream(
this_token,
session_id,
last_chunk,
)
# update chunk size
if len(self.chunk_size_dict[session_id]) > 1:
self.chunk_size_dict[session_id].pop(0)
else:
this_speech = None
# clear all caches
if last_chunk:
self.clean_up(session_id)
return this_speech
def clean_up(self, session_id: str):
self.chunk_size_dict.pop(session_id, None)
self.hift_cache_dict.pop(session_id, None)
self.chunk_cache_dict.pop(session_id, None)
self.estimator_prompt_length_dict.pop(session_id, None)
self.spk_embedding_cache_dict.pop(session_id, None)
self.speech_token_dict.pop(session_id, None)
torch.cuda.empty_cache()
"""Keep compatible with cosyvoice1
"""
class CosyVoice:
def __init__(self,
model_dir:str,
chunk_size_list: List = [15, 24, 48], # (0.6s, 0.96s, 1.92s)
mel_cache_len: int = 8,
n_timesteps: int = 10,
enable_cuda_graph: bool = True,
dtype=torch.float32,
):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.dtype = dtype
# initiate streaming wrapper
self.model_dir = model_dir
with open("{}/cosyvoice.yaml".format(model_dir), "r") as f:
configs = load_hyperpyyaml(f)
flow, hift = configs['flow'], configs['hift']
mel_conf = configs['mel_conf']
flow.load_state_dict(torch.load(f"{model_dir}/flow.pt", map_location='cpu'))
flow = flow.eval()
hift.load_state_dict(torch.load(f"{model_dir}/hift.pt", map_location='cpu'))
hift = hift.eval()
cosy_impl = CosyVoice_stream_impl_(flow, hift, chunk_size_list, mel_cache_len, n_timesteps)
self.cosy_impl = cosy_impl.to(self.device, self.dtype)
if enable_cuda_graph:
self.cosy_impl.flow.scatter_cuda_graph(enable_cuda_graph)
self.cosy_impl.hift._init_cuda_graph()
# feature frontend
self.frontend = CosyVoiceFrontEnd(
mel_conf,
campplus_model='{}/campplus.onnx'.format(model_dir),
speech_tokenizer_model='{}/speech_tokenizer_v1.onnx'.format(model_dir),
)
# Just proxy
def token2wav_nonstream(self,
token: torch.Tensor, # vq0206 mixed seq
prompt_token: torch.Tensor,
prompt_feat: torch.Tensor,
embedding: torch.Tensor,
)->torch.Tensor:
return self.cosy_impl.token2wav_nonstream(
token,
prompt_token,
prompt_feat,
embedding,
)
# Just proxy
def token2wav_stream(self,
token: List[int], # vq0206 mixed seq tokens
prompt_token: torch.Tensor,
prompt_feat: torch.Tensor,
embedding: torch.Tensor,
session_id: str,
last_chunk: bool,
)->Optional[torch.Tensor]:
return self.cosy_impl.token2wav_stream(
token,
prompt_token,
prompt_feat,
embedding,
session_id,
last_chunk,
)
def clean_up(self, session_id: str):
self.cosy_impl.clean_up(session_id)
|