Spaces:
Running
Running
File size: 10,240 Bytes
01ee73c 3f8009c 01ee73c 3f8009c 01ee73c fc5a2be 3f8009c e9abbb0 3f8009c 098e8e5 3f8009c 01ee73c 3f8009c 01ee73c 3f8009c 01ee73c 3f8009c 01ee73c 3f8009c 01ee73c 3f8009c 01ee73c 3f8009c 01ee73c 3f8009c 01ee73c 3f8009c 01ee73c 3f8009c 01ee73c 3f8009c 01ee73c 3f8009c a21bd50 b5da221 3f8009c 01ee73c 3f8009c 01ee73c 3f8009c 01ee73c 3f8009c 01ee73c 3f8009c 01ee73c 3f8009c 01ee73c 3f8009c 01ee73c 3f8009c 01ee73c 3f8009c 01ee73c 3f8009c fde2dcb 3f8009c 01ee73c 3f8009c 467194a 3f8009c 01ee73c 3f8009c 01ee73c 3f8009c 01ee73c fc5a2be 01ee73c 3f8009c 01ee73c 3f8009c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
#!/usr/bin/env python3
"""
Step Audio R1 vLLM Gradio Interface
"""
import base64
import json
import os
import gradio as gr
import httpx
API_BASE_URL = os.getenv("API_BASE_URL", "http://localhost:9999/v1")
MODEL_NAME = os.getenv("MODEL_NAME", "Step-Audio-R1")
def encode_audio(audio_path):
"""编码音频为base64"""
if not audio_path or not os.path.exists(audio_path):
return None
try:
with open(audio_path, "rb") as f:
return base64.b64encode(f.read()).decode()
except Exception as e:
print(f"[DEBUG] Audio error: {e}")
return None
def format_messages(system, history, user_text, audio_data=None, audio_format="wav"):
"""Format message list"""
messages = []
if system:
messages.append({"role": "system", "content": system})
if not history:
history = []
# 处理历史记录
for item in history:
# 支持 list of dicts 格式
if isinstance(item, dict) and "role" in item and "content" in item:
messages.append(item)
# 支持 Gradio ChatMessage 对象
elif hasattr(item, "role") and hasattr(item, "content"):
messages.append({"role": item.role, "content": item.content})
# 添加当前用户消息
if user_text and audio_data:
messages.append({
"role": "user",
"content": [
{
"type": "input_audio",
"input_audio": {
"data": audio_data,
"format": audio_format
}
},
{
"type": "text",
"text": user_text
}
]
})
elif user_text:
messages.append({"role": "user", "content": user_text})
elif audio_data:
messages.append({
"role": "user",
"content": [
{
"type": "input_audio",
"input_audio": {
"data": audio_data,
"format": audio_format
}
}
]
})
return messages
def chat(system_prompt, user_text, audio_file, history, max_tokens, temperature, top_p, model_name=None):
"""Chat function"""
# If model is not specified, use global configuration
if model_name is None:
model_name = MODEL_NAME
if not user_text and not audio_file:
return history or [], "Please enter text or upload audio"
# Ensure history is a list and formatted correctly
history = history or []
clean_history = []
for item in history:
if isinstance(item, dict) and 'role' in item and 'content' in item:
clean_history.append(item)
elif hasattr(item, "role") and hasattr(item, "content"):
# Keep ChatMessage object
clean_history.append(item)
history = clean_history
# Process audio
audio_data = None
audio_format = "wav"
if audio_file:
audio_data = encode_audio(audio_file)
if audio_file.lower().endswith(".mp3"):
audio_format = "mp3"
messages = format_messages(system_prompt, history, user_text, audio_data, audio_format)
if not messages:
return history or [], "Invalid input"
# Debug: Print message format
print(f"[DEBUG] Messages to API: {json.dumps(messages, ensure_ascii=False, indent=2)}")
print(f"[DEBUG] Messages type: {type(messages)}")
for i, msg in enumerate(messages):
print(f"[DEBUG] Message {i}: {type(msg)} - {msg}")
try:
with httpx.Client(base_url=API_BASE_URL, timeout=120) as client:
response = client.post("/chat/completions", json={
"model": model_name,
"messages": messages,
"max_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"stream": True,
"repetition_penalty": 1.07,
"stop_token_ids": [151665]
})
if response.status_code != 200:
error_msg = f"❌ API Error {response.status_code}"
if response.status_code == 404:
error_msg += " - vLLM service not ready"
elif response.status_code == 400:
error_msg += " - Bad request"
elif response.status_code == 500:
error_msg += " - Model error"
return history, error_msg
# Process streaming response
content_parts = []
for line in response.iter_lines():
if not line:
continue
# Ensure line is string format
if isinstance(line, bytes):
line = line.decode('utf-8')
else:
line = str(line)
if line.startswith('data: '):
data_str = line[6:]
if data_str.strip() == '[DONE]':
break
try:
data = json.loads(data_str)
if 'choices' in data and len(data['choices']) > 0:
delta = data['choices'][0].get('delta', {})
if 'content' in delta:
content_parts.append(delta['content'])
except json.JSONDecodeError:
continue
full_content = ''.join(content_parts)
# Update history - only add when no error
history = history or []
# Add user message
if audio_file:
# If audio exists, show audio file and text (if any)
# Gradio Chatbot supports tuple (file_path,) to show file
# But in messages format, we need to construct proper content
# Here we use tuple format to let Gradio render audio player, or use HTML
# Simpler way: if multimodal, add messages separately
# 1. Add audio message
history.append({"role": "user", "content": gr.Audio(audio_file)})
# 2. If text exists, add text message
if user_text:
history.append({"role": "user", "content": user_text})
else:
# Text only
history.append({"role": "user", "content": user_text})
# Split think and content
if "</think>" in full_content:
parts = full_content.split("</think>", 1)
think_content = parts[0].strip()
response_content = parts[1].strip()
# Remove possible start tag
if think_content.startswith("<think>"):
think_content = think_content[len("<think>"):].strip()
# Add thinking process message (use ChatMessage and metadata)
if think_content:
history.append(gr.ChatMessage(
role="assistant",
content=think_content,
metadata={"title": "⏳ Thinking Process"}
))
# Add formal response message
if response_content:
history.append({"role": "assistant", "content": response_content})
else:
# No think tag, add full response directly
assistant_text = full_content.strip()
if assistant_text:
history.append({"role": "assistant", "content": assistant_text})
return history, ""
except httpx.ConnectError:
return history, "❌ Cannot connect to vLLM API"
except Exception as e:
return history, f"❌ Error: {str(e)}"
# Gradio Interface
with gr.Blocks(title="Step Audio R1") as demo:
gr.Markdown("# Step Audio R1 Chat")
with gr.Row():
# Left Configuration
with gr.Column(scale=1):
with gr.Accordion("Configuration", open=True):
system_prompt = gr.Textbox(
label="System Prompt",
lines=2,
value="You are an audio analysis expert"
)
max_tokens = gr.Slider(1, 8192, value=1024, label="Max Tokens")
temperature = gr.Slider(0.0, 2.0, value=0.7, label="Temperature")
top_p = gr.Slider(0.0, 1.0, value=0.9, label="Top P")
status = gr.Textbox(label="Status", interactive=False)
# Right Chat
with gr.Column(scale=2):
chatbot = gr.Chatbot(label="Chat History", height=450)
user_text = gr.Textbox(label="Input", lines=2, placeholder="Enter message...")
audio_file = gr.Audio(label="Audio", type="filepath", sources=["microphone", "upload"])
with gr.Row():
submit_btn = gr.Button("Send", variant="primary", scale=2)
clear_btn = gr.Button("Clear", scale=1)
# 事件绑定 - 函数将在启动时定义
# 直接绑定 chat 函数;不要传递外部的 `model_to_use`,chat 使用默认的 `MODEL_NAME` 或内部参数
submit_btn.click(
fn=chat,
inputs=[system_prompt, user_text, audio_file, chatbot, max_tokens, temperature, top_p],
outputs=[chatbot, status]
)
clear_btn.click(
fn=lambda: ([], "", None),
outputs=[chatbot, user_text, audio_file]
)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--host", default="0.0.0.0")
parser.add_argument("--port", type=int, default=7860)
parser.add_argument("--model", default=MODEL_NAME)
args = parser.parse_args()
# 更新全局模型名称
if args.model:
MODEL_NAME = args.model
print(f"启动Gradio: http://{args.host}:{args.port}")
print(f"API地址: {API_BASE_URL}")
print(f"模型: {MODEL_NAME}")
demo.launch(server_name=args.host, server_port=args.port, share=False) |