import torch import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel BASE_ID = "unsloth/Llama-3.2-3B-Instruct-bnb-4bit" LORA_PATH = "./lora_model" def load_model(): tokenizer = AutoTokenizer.from_pretrained(BASE_ID, use_fast=True) # 4bit baseline 一般需要 GPU;Space 选 GPU 才建议这样跑 base_model = AutoModelForCausalLM.from_pretrained( BASE_ID, device_map="auto", torch_dtype=torch.float16, ) model = PeftModel.from_pretrained(base_model, LORA_PATH) model.eval() return tokenizer, model tokenizer, model = load_model() @torch.inference_mode() def respond(prompt, max_new_tokens=256, temperature=0.7, top_p=0.9): inputs = tokenizer(prompt, return_tensors="pt").to(model.device) out = model.generate( **inputs, max_new_tokens=int(max_new_tokens), do_sample=True, temperature=float(temperature), top_p=float(top_p), eos_token_id=tokenizer.eos_token_id, ) return tokenizer.decode(out[0], skip_special_tokens=True) demo = gr.Interface( fn=respond, inputs=[ gr.Textbox(lines=6, label="Prompt"), gr.Slider(1, 1024, value=256, step=1, label="max_new_tokens"), gr.Slider(0.0, 2.0, value=0.7, step=0.05, label="temperature"), gr.Slider(0.0, 1.0, value=0.9, step=0.01, label="top_p"), ], outputs=gr.Textbox(lines=12, label="Output"), title="Llama-3.2-1B (4bit) + LoRA Adapter", ) if __name__ == "__main__": demo.launch()