Spaces:
Sleeping
Sleeping
| from langchain_groq import ChatGroq | |
| from langchain.chains import LLMChain | |
| from langchain.prompts import PromptTemplate | |
| from langchain.tools import Tool | |
| import os | |
| # summeriser | |
| GROQ_API_KEY = os.getenv("GROQ_API_KEY") | |
| if not GROQ_API_KEY: | |
| raise ValueError("GROQ_API_KEY environment variable is not set.") | |
| # Initialize ChatGroq for summarization | |
| summarizer_llm = ChatGroq( | |
| temperature=0.7, | |
| model="llama3-8b-8192", | |
| api_key=GROQ_API_KEY, | |
| streaming=True, | |
| verbose=True | |
| ) | |
| # Define a prompt template for summarization | |
| summarization_prompt = PromptTemplate( | |
| input_variables=["text"], | |
| template="Summarize the following content: {text}" | |
| ) | |
| # Create the summarization chain | |
| summarization_chain = LLMChain( | |
| llm=summarizer_llm, | |
| prompt=summarization_prompt | |
| ) | |
| # Define the summarizer tool | |
| def summarize_content_tool(text: str) -> str: | |
| return summarization_chain.run(text=text) | |
| summarizer_tool = Tool( | |
| name="summarizer", | |
| description="Summarizes content using a language model.", | |
| func=summarize_content_tool | |
| ) | |