import math from random import shuffle import cv2 import tensorflow as tf import numpy as np from keras.utils import to_categorical from PIL import Image from .utils import cvtColor, preprocess_input class ClsDatasets(keras.utils.Sequence): def __init__(self, annotation_lines, input_shape, batch_size, num_classes, train, **kwargs): super().__init__() self.annotation_lines = annotation_lines self.length = len(self.annotation_lines) self.input_shape = input_shape self.batch_size = batch_size self.num_classes = num_classes self.train = train def __len__(self): return int(math.ceil(self.length / float(self.batch_size))) def __getitem__(self, index): X_train = [] Y_train = [] start = index * self.batch_size end = min((index + 1) * self.batch_size, self.length) for i in range(start, end): annotation_path = self.annotation_lines[i].split(';')[1].split()[0] image = Image.open(annotation_path) image = self.get_random_data(image, self.input_shape, random=self.train) image = preprocess_input(np.array(image).astype(np.float32)) X_train.append(image) Y_train.append(int(self.annotation_lines[i].split(';')[0])) X_train = np.array(X_train) Y_train = to_categorical(np.array(Y_train), num_classes = self.num_classes) return X_train, Y_train def on_epoch_end(self): if self.train: np.random.shuffle(self.annotation_lines) def rand(self, a=0, b=1): return np.random.rand()*(b-a) + a def get_random_data(self, image, input_shape, jitter=.3, hue=.1, sat=1.5, val=1.5, random=True): # Read and convert images to RGB image = cvtColor(image) iw, ih = image.size h, w = input_shape if not random: scale = min(w/iw, h/ih) nw = int(iw*scale) nh = int(ih*scale) dx = (w-nw)//2 dy = (h-nh)//2 image = image.resize((nw,nh), Image.BICUBIC) new_image = Image.new('RGB', (w,h), (128,128,128)) new_image.paste(image, (dx, dy)) image_data = np.array(new_image, np.float32) return image_data new_ar = w/h * self.rand(1-jitter,1+jitter)/self.rand(1-jitter,1+jitter) scale = self.rand(.75, 1.25) if new_ar < 1: nh = int(scale*h) nw = int(nh*new_ar) else: nw = int(scale*w) nh = int(nw/new_ar) image = image.resize((nw,nh), Image.BICUBIC) dx = int(self.rand(0, w-nw)) dy = int(self.rand(0, h-nh)) new_image = Image.new('RGB', (w,h), (128,128,128)) new_image.paste(image, (dx, dy)) image = new_image flip = self.rand()<.5 if flip: image = image.transpose(Image.FLIP_LEFT_RIGHT) rotate = self.rand()<.5 if rotate: angle = np.random.randint(-15,15) a,b = w/2,h/2 M = cv2.getRotationMatrix2D((a,b),angle,1) image = cv2.warpAffine(np.array(image), M, (w,h), borderValue=[128,128,128]) hue = self.rand(-hue, hue) sat = self.rand(1, sat) if self.rand()<.5 else 1/self.rand(1, sat) val = self.rand(1, val) if self.rand()<.5 else 1/self.rand(1, val) x = cv2.cvtColor(np.array(image,np.float32)/255, cv2.COLOR_RGB2HSV) x[..., 1] *= sat x[..., 2] *= val x[x[:,:, 0]>360, 0] = 360 x[:, :, 1:][x[:, :, 1:]>1] = 1 x[x<0] = 0 image_data = cv2.cvtColor(x, cv2.COLOR_HSV2RGB)*255 return image_data