Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import fitz # PyMuPDF for PDF processing
|
| 3 |
import faiss
|
|
@@ -8,18 +12,16 @@ from sentence_transformers import SentenceTransformer
|
|
| 8 |
from groq import Groq
|
| 9 |
from dotenv import load_dotenv
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
# Load API key
|
| 15 |
load_dotenv()
|
| 16 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
| 17 |
|
| 18 |
# Initialize Groq client
|
| 19 |
-
client = Groq(api_key=
|
| 20 |
|
| 21 |
# Load sentence transformer model for embedding
|
| 22 |
embedding_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
|
|
|
| 23 |
def extract_text_from_pdf(pdf_path):
|
| 24 |
"""Extract text from a PDF file using PyMuPDF."""
|
| 25 |
doc = fitz.open(pdf_path)
|
|
@@ -27,13 +29,7 @@ def extract_text_from_pdf(pdf_path):
|
|
| 27 |
for page in doc:
|
| 28 |
text += page.get_text("text") + "\n"
|
| 29 |
return text.strip()
|
| 30 |
-
|
| 31 |
-
"""Extract text from a PDF file using PyMuPDF."""
|
| 32 |
-
doc = fitz.open(pdf_path)
|
| 33 |
-
text = ""
|
| 34 |
-
for page in doc:
|
| 35 |
-
text += page.get_text("text") + "\n"
|
| 36 |
-
return text.strip()
|
| 37 |
def create_text_chunks(text, chunk_size=500, chunk_overlap=100):
|
| 38 |
"""Split text into chunks of specified size with overlap."""
|
| 39 |
text_splitter = RecursiveCharacterTextSplitter(
|
|
@@ -42,6 +38,7 @@ def create_text_chunks(text, chunk_size=500, chunk_overlap=100):
|
|
| 42 |
)
|
| 43 |
chunks = text_splitter.split_text(text)
|
| 44 |
return chunks
|
|
|
|
| 45 |
def create_faiss_index(chunks):
|
| 46 |
"""Generate embeddings for text chunks and store them in FAISS."""
|
| 47 |
embeddings = embedding_model.encode(chunks, convert_to_numpy=True)
|
|
@@ -51,6 +48,7 @@ def create_faiss_index(chunks):
|
|
| 51 |
index.add(embeddings) # Add embeddings to FAISS index
|
| 52 |
|
| 53 |
return index, embeddings, chunks
|
|
|
|
| 54 |
def retrieve_similar_chunks(query, index, embeddings, chunks, top_k=3):
|
| 55 |
"""Retrieve the most relevant text chunks using FAISS."""
|
| 56 |
query_embedding = embedding_model.encode([query], convert_to_numpy=True)
|
|
@@ -58,6 +56,7 @@ def retrieve_similar_chunks(query, index, embeddings, chunks, top_k=3):
|
|
| 58 |
|
| 59 |
results = [chunks[idx] for idx in indices[0]]
|
| 60 |
return results
|
|
|
|
| 61 |
def query_groq_api(query, context):
|
| 62 |
"""Send the query along with retrieved context to Groq API."""
|
| 63 |
prompt = f"Use the following context to answer the question:\n\n{context}\n\nQuestion: {query}\nAnswer:"
|
|
@@ -68,8 +67,8 @@ def query_groq_api(query, context):
|
|
| 68 |
)
|
| 69 |
|
| 70 |
return chat_completion.choices[0].message.content
|
| 71 |
-
import streamlit as st
|
| 72 |
|
|
|
|
| 73 |
st.title("π RAG-based PDF Query Application")
|
| 74 |
st.write("Upload a PDF and ask questions!")
|
| 75 |
|
|
@@ -106,5 +105,4 @@ if uploaded_file is not None:
|
|
| 106 |
st.subheader("Answer:")
|
| 107 |
st.write(response)
|
| 108 |
else:
|
| 109 |
-
st.warning("Please enter a question.")
|
| 110 |
-
|
|
|
|
| 1 |
+
|
| 2 |
+
### `app.py`
|
| 3 |
+
|
| 4 |
+
```python
|
| 5 |
import os
|
| 6 |
import fitz # PyMuPDF for PDF processing
|
| 7 |
import faiss
|
|
|
|
| 12 |
from groq import Groq
|
| 13 |
from dotenv import load_dotenv
|
| 14 |
|
|
|
|
|
|
|
|
|
|
| 15 |
# Load API key
|
| 16 |
load_dotenv()
|
| 17 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
| 18 |
|
| 19 |
# Initialize Groq client
|
| 20 |
+
client = Groq(api_key=GROQ_API_KEY)
|
| 21 |
|
| 22 |
# Load sentence transformer model for embedding
|
| 23 |
embedding_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
| 24 |
+
|
| 25 |
def extract_text_from_pdf(pdf_path):
|
| 26 |
"""Extract text from a PDF file using PyMuPDF."""
|
| 27 |
doc = fitz.open(pdf_path)
|
|
|
|
| 29 |
for page in doc:
|
| 30 |
text += page.get_text("text") + "\n"
|
| 31 |
return text.strip()
|
| 32 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
def create_text_chunks(text, chunk_size=500, chunk_overlap=100):
|
| 34 |
"""Split text into chunks of specified size with overlap."""
|
| 35 |
text_splitter = RecursiveCharacterTextSplitter(
|
|
|
|
| 38 |
)
|
| 39 |
chunks = text_splitter.split_text(text)
|
| 40 |
return chunks
|
| 41 |
+
|
| 42 |
def create_faiss_index(chunks):
|
| 43 |
"""Generate embeddings for text chunks and store them in FAISS."""
|
| 44 |
embeddings = embedding_model.encode(chunks, convert_to_numpy=True)
|
|
|
|
| 48 |
index.add(embeddings) # Add embeddings to FAISS index
|
| 49 |
|
| 50 |
return index, embeddings, chunks
|
| 51 |
+
|
| 52 |
def retrieve_similar_chunks(query, index, embeddings, chunks, top_k=3):
|
| 53 |
"""Retrieve the most relevant text chunks using FAISS."""
|
| 54 |
query_embedding = embedding_model.encode([query], convert_to_numpy=True)
|
|
|
|
| 56 |
|
| 57 |
results = [chunks[idx] for idx in indices[0]]
|
| 58 |
return results
|
| 59 |
+
|
| 60 |
def query_groq_api(query, context):
|
| 61 |
"""Send the query along with retrieved context to Groq API."""
|
| 62 |
prompt = f"Use the following context to answer the question:\n\n{context}\n\nQuestion: {query}\nAnswer:"
|
|
|
|
| 67 |
)
|
| 68 |
|
| 69 |
return chat_completion.choices[0].message.content
|
|
|
|
| 70 |
|
| 71 |
+
# Streamlit UI
|
| 72 |
st.title("π RAG-based PDF Query Application")
|
| 73 |
st.write("Upload a PDF and ask questions!")
|
| 74 |
|
|
|
|
| 105 |
st.subheader("Answer:")
|
| 106 |
st.write(response)
|
| 107 |
else:
|
| 108 |
+
st.warning("Please enter a question.")
|
|
|