Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,14 +5,12 @@ from langchain_community.document_loaders import PyPDFLoader
|
|
| 5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 6 |
from langchain_community.vectorstores import FAISS
|
| 7 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 8 |
-
from
|
| 9 |
-
from langchain.
|
| 10 |
-
from
|
| 11 |
-
from langchain_core.runnables import RunnablePassthrough
|
| 12 |
-
from langchain_core.output_parsers import StrOutputParser
|
| 13 |
import base64
|
| 14 |
|
| 15 |
-
# Set page config
|
| 16 |
st.set_page_config(
|
| 17 |
page_title="EduQuery - Smart PDF Assistant",
|
| 18 |
page_icon="π",
|
|
@@ -20,11 +18,19 @@ st.set_page_config(
|
|
| 20 |
initial_sidebar_state="collapsed"
|
| 21 |
)
|
| 22 |
|
| 23 |
-
# Embedded CSS for
|
| 24 |
st.markdown("""
|
| 25 |
<style>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
body {
|
| 27 |
-
background-color: #
|
|
|
|
| 28 |
}
|
| 29 |
|
| 30 |
.stApp {
|
|
@@ -34,37 +40,47 @@ body {
|
|
| 34 |
}
|
| 35 |
|
| 36 |
.header {
|
| 37 |
-
background: linear-gradient(135deg,
|
| 38 |
color: white;
|
| 39 |
padding: 2rem;
|
| 40 |
border-radius: 15px;
|
| 41 |
margin-bottom: 2rem;
|
| 42 |
text-align: center;
|
|
|
|
| 43 |
}
|
| 44 |
|
| 45 |
.header h1 {
|
| 46 |
-
font-size: 2.
|
| 47 |
margin-bottom: 0.5rem;
|
| 48 |
}
|
| 49 |
|
| 50 |
.stButton>button {
|
| 51 |
-
background: linear-gradient(135deg,
|
| 52 |
color: white;
|
| 53 |
border: none;
|
| 54 |
border-radius: 25px;
|
| 55 |
-
padding: 0.
|
| 56 |
font-weight: bold;
|
|
|
|
| 57 |
transition: all 0.3s ease;
|
|
|
|
| 58 |
}
|
| 59 |
|
| 60 |
.stButton>button:hover {
|
| 61 |
transform: scale(1.05);
|
| 62 |
-
box-shadow: 0 5px 15px rgba(
|
| 63 |
}
|
| 64 |
|
| 65 |
.stTextInput>div>div>input {
|
| 66 |
border-radius: 25px;
|
| 67 |
-
padding: 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
}
|
| 69 |
|
| 70 |
.stChatMessage {
|
|
@@ -72,31 +88,55 @@ body {
|
|
| 72 |
border-radius: 20px;
|
| 73 |
margin-bottom: 1rem;
|
| 74 |
max-width: 80%;
|
|
|
|
| 75 |
}
|
| 76 |
|
| 77 |
.stChatMessage[data-testid="user"] {
|
| 78 |
-
background: linear-gradient(135deg, #
|
| 79 |
margin-left: auto;
|
|
|
|
| 80 |
}
|
| 81 |
|
| 82 |
.stChatMessage[data-testid="assistant"] {
|
| 83 |
-
background: linear-gradient(135deg, #
|
| 84 |
margin-right: auto;
|
|
|
|
|
|
|
| 85 |
}
|
| 86 |
|
| 87 |
-
.
|
| 88 |
-
background: linear-gradient(135deg, #
|
| 89 |
-
padding:
|
| 90 |
border-radius: 15px;
|
| 91 |
-
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
}
|
| 94 |
|
| 95 |
.footer {
|
| 96 |
text-align: center;
|
| 97 |
-
color: #
|
| 98 |
-
padding-top:
|
| 99 |
font-size: 0.9rem;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
}
|
| 101 |
</style>
|
| 102 |
""", unsafe_allow_html=True)
|
|
@@ -112,11 +152,10 @@ st.markdown("""
|
|
| 112 |
# Initialize session state
|
| 113 |
if "vector_store" not in st.session_state:
|
| 114 |
st.session_state.vector_store = None
|
| 115 |
-
if "
|
| 116 |
-
st.session_state.
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
MODEL_NAME = "nous-hermes2" # Best open-source model for instruction following
|
| 120 |
|
| 121 |
# PDF Processing
|
| 122 |
def process_pdf(pdf_file):
|
|
@@ -125,129 +164,96 @@ def process_pdf(pdf_file):
|
|
| 125 |
tmp_path = tmp_file.name
|
| 126 |
|
| 127 |
loader = PyPDFLoader(tmp_path)
|
| 128 |
-
|
| 129 |
|
| 130 |
text_splitter = RecursiveCharacterTextSplitter(
|
| 131 |
-
chunk_size=
|
| 132 |
-
chunk_overlap=
|
| 133 |
-
length_function=len
|
| 134 |
)
|
| 135 |
-
chunks = text_splitter.split_documents(
|
| 136 |
|
| 137 |
-
embeddings = HuggingFaceEmbeddings(model_name="
|
| 138 |
vector_store = FAISS.from_documents(chunks, embeddings)
|
| 139 |
|
| 140 |
os.unlink(tmp_path)
|
| 141 |
return vector_store
|
| 142 |
|
| 143 |
-
#
|
| 144 |
def setup_qa_chain(vector_store):
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
Question: {question}
|
| 152 |
-
|
| 153 |
-
Provide a clear, concise answer with page number references. If unsure, say "I couldn't find this information in the document".
|
| 154 |
-
"""
|
| 155 |
-
|
| 156 |
-
prompt = PromptTemplate(
|
| 157 |
-
template=custom_prompt,
|
| 158 |
-
input_variables=["context", "question"]
|
| 159 |
)
|
| 160 |
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
{"context": retriever, "question": RunnablePassthrough()}
|
| 165 |
-
| prompt
|
| 166 |
-
| llm
|
| 167 |
-
| StrOutputParser()
|
| 168 |
)
|
| 169 |
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
prompt = PromptTemplate(
|
| 177 |
-
input_variables=["chapter_title"],
|
| 178 |
-
template="""
|
| 179 |
-
You are an expert educator. Generate 5 important questions and answers about '{chapter_title}'
|
| 180 |
-
that would help students understand key concepts. Format as:
|
| 181 |
-
|
| 182 |
-
Q1: [Question]
|
| 183 |
-
A1: [Answer with page reference]
|
| 184 |
-
|
| 185 |
-
Q2: [Question]
|
| 186 |
-
A2: [Answer with page reference]
|
| 187 |
-
..."""
|
| 188 |
)
|
| 189 |
|
| 190 |
-
|
| 191 |
-
return chain.invoke({"chapter_title": chapter_title})
|
| 192 |
|
| 193 |
# File upload section
|
| 194 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
uploaded_file = st.file_uploader("", type="pdf", accept_multiple_files=False, label_visibility="collapsed")
|
| 196 |
|
|
|
|
|
|
|
| 197 |
if uploaded_file:
|
| 198 |
with st.spinner("Processing PDF..."):
|
| 199 |
st.session_state.vector_store = process_pdf(uploaded_file)
|
|
|
|
| 200 |
st.success("PDF processed successfully! You can now ask questions.")
|
| 201 |
|
| 202 |
-
#
|
| 203 |
-
|
|
|
|
|
|
|
|
|
|
| 204 |
|
| 205 |
-
#
|
| 206 |
-
|
| 207 |
-
st.
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
st.session_state.vector_store,
|
| 214 |
-
chapter_title
|
| 215 |
-
)
|
| 216 |
-
st.markdown(f"<div class='qa-box'>{questions}</div>", unsafe_allow_html=True)
|
| 217 |
-
elif chapter_title and not st.session_state.vector_store:
|
| 218 |
st.warning("Please upload a PDF first")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
|
| 220 |
-
|
| 221 |
-
with col2:
|
| 222 |
-
st.subheader("π¬ Ask Anything About the Document")
|
| 223 |
-
|
| 224 |
-
for message in st.session_state.messages:
|
| 225 |
-
with st.chat_message(message["role"]):
|
| 226 |
-
st.markdown(message["content"])
|
| 227 |
-
|
| 228 |
-
if prompt := st.chat_input("Your question..."):
|
| 229 |
-
if not st.session_state.vector_store:
|
| 230 |
-
st.warning("Please upload a PDF first")
|
| 231 |
-
st.stop()
|
| 232 |
-
|
| 233 |
-
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 234 |
-
with st.chat_message("user"):
|
| 235 |
-
st.markdown(prompt)
|
| 236 |
-
|
| 237 |
-
with st.chat_message("assistant"):
|
| 238 |
-
with st.spinner("Thinking..."):
|
| 239 |
-
qa_chain = setup_qa_chain(st.session_state.vector_store)
|
| 240 |
-
response = qa_chain.invoke(prompt)
|
| 241 |
-
st.markdown(response)
|
| 242 |
-
st.session_state.messages.append({"role": "assistant", "content": response})
|
| 243 |
|
| 244 |
# Footer
|
| 245 |
-
st.markdown("
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
</div>
|
| 251 |
-
""",
|
| 252 |
-
unsafe_allow_html=True
|
| 253 |
-
)
|
|
|
|
| 5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 6 |
from langchain_community.vectorstores import FAISS
|
| 7 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 8 |
+
from langchain.chains import ConversationalRetrievalChain
|
| 9 |
+
from langchain.memory import ConversationBufferMemory
|
| 10 |
+
from langchain_community.llms import HuggingFaceHub
|
|
|
|
|
|
|
| 11 |
import base64
|
| 12 |
|
| 13 |
+
# Set page config with light purple theme
|
| 14 |
st.set_page_config(
|
| 15 |
page_title="EduQuery - Smart PDF Assistant",
|
| 16 |
page_icon="π",
|
|
|
|
| 18 |
initial_sidebar_state="collapsed"
|
| 19 |
)
|
| 20 |
|
| 21 |
+
# Embedded CSS for light purple UI
|
| 22 |
st.markdown("""
|
| 23 |
<style>
|
| 24 |
+
:root {
|
| 25 |
+
--primary: #8a4fff;
|
| 26 |
+
--secondary: #d0bcff;
|
| 27 |
+
--light: #f3edff;
|
| 28 |
+
--dark: #4a2b80;
|
| 29 |
+
}
|
| 30 |
+
|
| 31 |
body {
|
| 32 |
+
background-color: #f8f5ff;
|
| 33 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
| 34 |
}
|
| 35 |
|
| 36 |
.stApp {
|
|
|
|
| 40 |
}
|
| 41 |
|
| 42 |
.header {
|
| 43 |
+
background: linear-gradient(135deg, var(--primary) 0%, var(--dark) 100%);
|
| 44 |
color: white;
|
| 45 |
padding: 2rem;
|
| 46 |
border-radius: 15px;
|
| 47 |
margin-bottom: 2rem;
|
| 48 |
text-align: center;
|
| 49 |
+
box-shadow: 0 4px 20px rgba(138, 79, 255, 0.2);
|
| 50 |
}
|
| 51 |
|
| 52 |
.header h1 {
|
| 53 |
+
font-size: 2.8rem;
|
| 54 |
margin-bottom: 0.5rem;
|
| 55 |
}
|
| 56 |
|
| 57 |
.stButton>button {
|
| 58 |
+
background: linear-gradient(135deg, var(--primary) 0%, var(--dark) 100%);
|
| 59 |
color: white;
|
| 60 |
border: none;
|
| 61 |
border-radius: 25px;
|
| 62 |
+
padding: 0.75rem 2rem;
|
| 63 |
font-weight: bold;
|
| 64 |
+
font-size: 1rem;
|
| 65 |
transition: all 0.3s ease;
|
| 66 |
+
margin-top: 1rem;
|
| 67 |
}
|
| 68 |
|
| 69 |
.stButton>button:hover {
|
| 70 |
transform: scale(1.05);
|
| 71 |
+
box-shadow: 0 5px 15px rgba(138, 79, 255, 0.3);
|
| 72 |
}
|
| 73 |
|
| 74 |
.stTextInput>div>div>input {
|
| 75 |
border-radius: 25px;
|
| 76 |
+
padding: 0.9rem 1.5rem;
|
| 77 |
+
border: 1px solid var(--secondary);
|
| 78 |
+
background-color: var(--light);
|
| 79 |
+
}
|
| 80 |
+
|
| 81 |
+
.stTextInput>div>div>input:focus {
|
| 82 |
+
border-color: var(--primary);
|
| 83 |
+
box-shadow: 0 0 0 2px rgba(138, 79, 255, 0.2);
|
| 84 |
}
|
| 85 |
|
| 86 |
.stChatMessage {
|
|
|
|
| 88 |
border-radius: 20px;
|
| 89 |
margin-bottom: 1rem;
|
| 90 |
max-width: 80%;
|
| 91 |
+
box-shadow: 0 4px 12px rgba(0,0,0,0.05);
|
| 92 |
}
|
| 93 |
|
| 94 |
.stChatMessage[data-testid="user"] {
|
| 95 |
+
background: linear-gradient(135deg, #d0bcff 0%, #b8a1ff 100%);
|
| 96 |
margin-left: auto;
|
| 97 |
+
color: #4a2b80;
|
| 98 |
}
|
| 99 |
|
| 100 |
.stChatMessage[data-testid="assistant"] {
|
| 101 |
+
background: linear-gradient(135deg, #e6dcff 0%, #f3edff 100%);
|
| 102 |
margin-right: auto;
|
| 103 |
+
color: #4a2b80;
|
| 104 |
+
border: 1px solid var(--secondary);
|
| 105 |
}
|
| 106 |
|
| 107 |
+
.upload-area {
|
| 108 |
+
background: linear-gradient(135deg, #f3edff 0%, #e6dcff 100%);
|
| 109 |
+
padding: 2rem;
|
| 110 |
border-radius: 15px;
|
| 111 |
+
text-align: center;
|
| 112 |
+
border: 2px dashed var(--primary);
|
| 113 |
+
margin-bottom: 2rem;
|
| 114 |
+
}
|
| 115 |
+
|
| 116 |
+
.chat-area {
|
| 117 |
+
background: white;
|
| 118 |
+
padding: 2rem;
|
| 119 |
+
border-radius: 15px;
|
| 120 |
+
box-shadow: 0 4px 20px rgba(138, 79, 255, 0.1);
|
| 121 |
+
height: 500px;
|
| 122 |
+
overflow-y: auto;
|
| 123 |
}
|
| 124 |
|
| 125 |
.footer {
|
| 126 |
text-align: center;
|
| 127 |
+
color: #8a4fff;
|
| 128 |
+
padding-top: 2rem;
|
| 129 |
font-size: 0.9rem;
|
| 130 |
+
margin-top: 2rem;
|
| 131 |
+
border-top: 1px solid var(--secondary);
|
| 132 |
+
}
|
| 133 |
+
|
| 134 |
+
.spinner {
|
| 135 |
+
color: var(--primary) !important;
|
| 136 |
+
}
|
| 137 |
+
|
| 138 |
+
.stSpinner > div > div {
|
| 139 |
+
border-top-color: var(--primary) !important;
|
| 140 |
}
|
| 141 |
</style>
|
| 142 |
""", unsafe_allow_html=True)
|
|
|
|
| 152 |
# Initialize session state
|
| 153 |
if "vector_store" not in st.session_state:
|
| 154 |
st.session_state.vector_store = None
|
| 155 |
+
if "chat_history" not in st.session_state:
|
| 156 |
+
st.session_state.chat_history = []
|
| 157 |
+
if "qa_chain" not in st.session_state:
|
| 158 |
+
st.session_state.qa_chain = None
|
|
|
|
| 159 |
|
| 160 |
# PDF Processing
|
| 161 |
def process_pdf(pdf_file):
|
|
|
|
| 164 |
tmp_path = tmp_file.name
|
| 165 |
|
| 166 |
loader = PyPDFLoader(tmp_path)
|
| 167 |
+
pages = loader.load_and_split()
|
| 168 |
|
| 169 |
text_splitter = RecursiveCharacterTextSplitter(
|
| 170 |
+
chunk_size=800,
|
| 171 |
+
chunk_overlap=150
|
|
|
|
| 172 |
)
|
| 173 |
+
chunks = text_splitter.split_documents(pages)
|
| 174 |
|
| 175 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 176 |
vector_store = FAISS.from_documents(chunks, embeddings)
|
| 177 |
|
| 178 |
os.unlink(tmp_path)
|
| 179 |
return vector_store
|
| 180 |
|
| 181 |
+
# Setup QA Chain
|
| 182 |
def setup_qa_chain(vector_store):
|
| 183 |
+
# Use Mistral-7B from Hugging Face Hub
|
| 184 |
+
repo_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
| 185 |
+
llm = HuggingFaceHub(
|
| 186 |
+
repo_id=repo_id,
|
| 187 |
+
model_kwargs={"temperature": 0.5, "max_new_tokens": 500}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
)
|
| 189 |
|
| 190 |
+
memory = ConversationBufferMemory(
|
| 191 |
+
memory_key="chat_history",
|
| 192 |
+
return_messages=True
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
)
|
| 194 |
|
| 195 |
+
qa_chain = ConversationalRetrievalChain.from_llm(
|
| 196 |
+
llm=llm,
|
| 197 |
+
retriever=vector_store.as_retriever(search_kwargs={"k": 3}),
|
| 198 |
+
memory=memory,
|
| 199 |
+
chain_type="stuff"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
)
|
| 201 |
|
| 202 |
+
return qa_chain
|
|
|
|
| 203 |
|
| 204 |
# File upload section
|
| 205 |
+
st.markdown("""
|
| 206 |
+
<div class="upload-area">
|
| 207 |
+
<h3>π€ Upload Your Textbook/Notes</h3>
|
| 208 |
+
""", unsafe_allow_html=True)
|
| 209 |
+
|
| 210 |
uploaded_file = st.file_uploader("", type="pdf", accept_multiple_files=False, label_visibility="collapsed")
|
| 211 |
|
| 212 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
| 213 |
+
|
| 214 |
if uploaded_file:
|
| 215 |
with st.spinner("Processing PDF..."):
|
| 216 |
st.session_state.vector_store = process_pdf(uploaded_file)
|
| 217 |
+
st.session_state.qa_chain = setup_qa_chain(st.session_state.vector_store)
|
| 218 |
st.success("PDF processed successfully! You can now ask questions.")
|
| 219 |
|
| 220 |
+
# Chat interface
|
| 221 |
+
st.markdown("""
|
| 222 |
+
<div class="chat-area">
|
| 223 |
+
<h3>π¬ Ask Anything About the Document</h3>
|
| 224 |
+
""", unsafe_allow_html=True)
|
| 225 |
|
| 226 |
+
# Display chat history
|
| 227 |
+
for message in st.session_state.chat_history:
|
| 228 |
+
with st.chat_message(message["role"]):
|
| 229 |
+
st.markdown(message["content"])
|
| 230 |
+
|
| 231 |
+
# User input
|
| 232 |
+
if prompt := st.chat_input("Your question..."):
|
| 233 |
+
if not st.session_state.vector_store:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
st.warning("Please upload a PDF first")
|
| 235 |
+
st.stop()
|
| 236 |
+
|
| 237 |
+
# Add user message to chat history
|
| 238 |
+
st.session_state.chat_history.append({"role": "user", "content": prompt})
|
| 239 |
+
with st.chat_message("user"):
|
| 240 |
+
st.markdown(prompt)
|
| 241 |
+
|
| 242 |
+
# Get assistant response
|
| 243 |
+
with st.chat_message("assistant"):
|
| 244 |
+
with st.spinner("Thinking..."):
|
| 245 |
+
response = st.session_state.qa_chain({"question": prompt})
|
| 246 |
+
answer = response["answer"]
|
| 247 |
+
st.markdown(answer)
|
| 248 |
+
|
| 249 |
+
# Add assistant response to chat history
|
| 250 |
+
st.session_state.chat_history.append({"role": "assistant", "content": answer})
|
| 251 |
|
| 252 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
|
| 254 |
# Footer
|
| 255 |
+
st.markdown("""
|
| 256 |
+
<div class="footer">
|
| 257 |
+
<p>EduQuery - Helping students learn smarter β’ Powered by Mistral-7B and LangChain</p>
|
| 258 |
+
</div>
|
| 259 |
+
""", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|