Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,423 +1,179 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
|
| 3 |
-
import
|
|
|
|
| 4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 5 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 6 |
from langchain_community.vectorstores import FAISS
|
| 7 |
-
import
|
| 8 |
-
import
|
| 9 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
#
|
| 12 |
st.set_page_config(
|
| 13 |
-
page_title="PDF
|
| 14 |
page_icon="π",
|
| 15 |
layout="wide",
|
| 16 |
initial_sidebar_state="collapsed"
|
| 17 |
)
|
| 18 |
|
| 19 |
-
# Custom CSS for colorful
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
st.markdown("""
|
| 21 |
-
<
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
--accent1: #ffcb74;
|
| 26 |
-
--accent2: #3a86ff;
|
| 27 |
-
--background: #f0f2f6;
|
| 28 |
-
--card: #ffffff;
|
| 29 |
-
}
|
| 30 |
-
|
| 31 |
-
.stApp {
|
| 32 |
-
background: linear-gradient(135deg, var(--background) 0%, #e0e5ec 100%);
|
| 33 |
-
}
|
| 34 |
-
|
| 35 |
-
.stButton>button {
|
| 36 |
-
background: linear-gradient(to right, var(--secondary), var(--primary));
|
| 37 |
-
color: white;
|
| 38 |
-
border-radius: 12px;
|
| 39 |
-
padding: 8px 20px;
|
| 40 |
-
font-weight: 600;
|
| 41 |
-
}
|
| 42 |
-
|
| 43 |
-
.stTextInput>div>div>input {
|
| 44 |
-
border-radius: 12px;
|
| 45 |
-
border: 2px solid var(--accent2);
|
| 46 |
-
padding: 10px;
|
| 47 |
-
}
|
| 48 |
-
|
| 49 |
-
.card {
|
| 50 |
-
background: var(--card);
|
| 51 |
-
border-radius: 15px;
|
| 52 |
-
box-shadow: 0 8px 16px rgba(0,0,0,0.1);
|
| 53 |
-
padding: 20px;
|
| 54 |
-
margin-bottom: 20px;
|
| 55 |
-
}
|
| 56 |
-
|
| 57 |
-
.header {
|
| 58 |
-
background: linear-gradient(to right, var(--accent2), var(--primary));
|
| 59 |
-
-webkit-background-clip: text;
|
| 60 |
-
-webkit-text-fill-color: transparent;
|
| 61 |
-
text-align: center;
|
| 62 |
-
margin-bottom: 30px;
|
| 63 |
-
}
|
| 64 |
-
|
| 65 |
-
.tab-content {
|
| 66 |
-
animation: fadeIn 0.5s ease-in-out;
|
| 67 |
-
}
|
| 68 |
-
|
| 69 |
-
.error {
|
| 70 |
-
background-color: #ffebee;
|
| 71 |
-
border-left: 4px solid #f44336;
|
| 72 |
-
padding: 10px;
|
| 73 |
-
margin: 10px 0;
|
| 74 |
-
}
|
| 75 |
-
|
| 76 |
-
.info {
|
| 77 |
-
background-color: #e3f2fd;
|
| 78 |
-
border-left: 4px solid #2196f3;
|
| 79 |
-
padding: 10px;
|
| 80 |
-
margin: 10px 0;
|
| 81 |
-
}
|
| 82 |
-
|
| 83 |
-
.success {
|
| 84 |
-
background-color: #e8f5e9;
|
| 85 |
-
border-left: 4px solid #4caf50;
|
| 86 |
-
padding: 10px;
|
| 87 |
-
margin: 10px 0;
|
| 88 |
-
}
|
| 89 |
-
|
| 90 |
-
@keyframes fadeIn {
|
| 91 |
-
from { opacity: 0; }
|
| 92 |
-
to { opacity: 1; }
|
| 93 |
-
}
|
| 94 |
-
</style>
|
| 95 |
""", unsafe_allow_html=True)
|
| 96 |
|
| 97 |
# Initialize session state
|
| 98 |
-
if
|
| 99 |
-
st.session_state.pdf_processed = False
|
| 100 |
-
if 'vector_store' not in st.session_state:
|
| 101 |
st.session_state.vector_store = None
|
| 102 |
-
if
|
| 103 |
-
st.session_state.
|
| 104 |
-
if 'history' not in st.session_state:
|
| 105 |
-
st.session_state.history = []
|
| 106 |
-
if 'token_valid' not in st.session_state:
|
| 107 |
-
st.session_state.token_valid = None
|
| 108 |
-
|
| 109 |
-
# Load embedding model with caching
|
| 110 |
-
@st.cache_resource
|
| 111 |
-
def load_embedding_model():
|
| 112 |
-
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 113 |
-
|
| 114 |
-
def check_token_validity():
|
| 115 |
-
"""Check if the token is valid by making a simple API call"""
|
| 116 |
-
if not os.getenv("HF_API_KEY"):
|
| 117 |
-
return False
|
| 118 |
-
|
| 119 |
-
try:
|
| 120 |
-
headers = {"Authorization": f"Bearer {os.getenv('HF_API_KEY')}"}
|
| 121 |
-
response = requests.get("https://huggingface.co/api/whoami", headers=headers)
|
| 122 |
-
return response.status_code == 200
|
| 123 |
-
except:
|
| 124 |
-
return False
|
| 125 |
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
API_URL = f"https://api-inference.huggingface.co/models/{model}"
|
| 129 |
-
headers = {"Authorization": f"Bearer {os.getenv('HF_API_KEY')}"} if os.getenv('HF_API_KEY') else {}
|
| 130 |
-
|
| 131 |
-
payload = {
|
| 132 |
-
"inputs": prompt,
|
| 133 |
-
"parameters": {
|
| 134 |
-
"max_new_tokens": max_tokens,
|
| 135 |
-
"temperature": 0.5,
|
| 136 |
-
"do_sample": False
|
| 137 |
-
}
|
| 138 |
-
}
|
| 139 |
-
|
| 140 |
-
try:
|
| 141 |
-
response = requests.post(API_URL, headers=headers, json=payload)
|
| 142 |
-
|
| 143 |
-
if response.status_code == 200:
|
| 144 |
-
result = response.json()
|
| 145 |
-
return result[0]['generated_text'] if result else ""
|
| 146 |
-
|
| 147 |
-
elif response.status_code == 403:
|
| 148 |
-
# Detailed debug information
|
| 149 |
-
st.session_state.token_valid = check_token_validity()
|
| 150 |
-
|
| 151 |
-
debug_info = f"""
|
| 152 |
-
<div class="error">
|
| 153 |
-
<h4>403 Forbidden Error</h4>
|
| 154 |
-
<p>Token is set: <strong>{'Yes' if os.getenv('HF_API_KEY') else 'No'}</strong></p>
|
| 155 |
-
<p>Token valid: <strong>{'Yes' if st.session_state.token_valid else 'No'}</strong></p>
|
| 156 |
-
<p>Model: {model}</p>
|
| 157 |
-
<p>Possible solutions:</p>
|
| 158 |
-
<ol>
|
| 159 |
-
<li>Visit the <a href="https://huggingface.co/{model}" target="_blank">model page</a> and click "Agree and access repository"</li>
|
| 160 |
-
<li>Ensure your token has "read" permissions</li>
|
| 161 |
-
<li>Wait 5-10 minutes after accepting terms</li>
|
| 162 |
-
<li>Try a different model using the dropdown below</li>
|
| 163 |
-
</ol>
|
| 164 |
-
</div>
|
| 165 |
-
"""
|
| 166 |
-
st.markdown(debug_info, unsafe_allow_html=True)
|
| 167 |
-
return ""
|
| 168 |
-
|
| 169 |
-
elif response.status_code == 429:
|
| 170 |
-
st.warning("Rate limit exceeded. Waiting and retrying...")
|
| 171 |
-
time.sleep(3)
|
| 172 |
-
return query_hf_inference_api(prompt, max_tokens, model)
|
| 173 |
-
|
| 174 |
-
else:
|
| 175 |
-
st.error(f"API Error {response.status_code}: {response.text[:200]}")
|
| 176 |
-
return ""
|
| 177 |
-
|
| 178 |
-
except Exception as e:
|
| 179 |
-
st.error(f"Connection error: {str(e)}")
|
| 180 |
-
return ""
|
| 181 |
|
|
|
|
| 182 |
def process_pdf(pdf_file):
|
| 183 |
-
""
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
text = ""
|
| 187 |
-
st.session_state.pages = []
|
| 188 |
-
for page in doc:
|
| 189 |
-
page_text = page.get_text()
|
| 190 |
-
text += page_text
|
| 191 |
-
st.session_state.pages.append(page_text)
|
| 192 |
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
chunk_size=1000,
|
| 196 |
-
chunk_overlap=200,
|
| 197 |
-
length_function=len
|
| 198 |
-
)
|
| 199 |
-
chunks = text_splitter.split_text(text)
|
| 200 |
-
|
| 201 |
-
embeddings = load_embedding_model()
|
| 202 |
-
st.session_state.vector_store = FAISS.from_texts(chunks, embeddings)
|
| 203 |
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
return "PDF not processed yet", []
|
| 211 |
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
context = "\n\n".join([doc.page_content[:500] for doc in docs])
|
| 215 |
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
|
|
|
|
|
|
| 220 |
|
| 221 |
-
|
|
|
|
| 222 |
{context}
|
| 223 |
|
| 224 |
Question: {question}
|
| 225 |
-
Answer:
|
| 226 |
-
"""
|
| 227 |
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
# Add to history
|
| 232 |
-
st.session_state.history.append({
|
| 233 |
-
"question": question,
|
| 234 |
-
"answer": answer,
|
| 235 |
-
"sources": [doc.page_content for doc in docs],
|
| 236 |
-
"model": model_choice
|
| 237 |
-
})
|
| 238 |
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
if start_page < 1 or end_page > len(st.session_state.pages) or start_page > end_page:
|
| 244 |
-
st.error("Invalid page range")
|
| 245 |
-
return []
|
| 246 |
|
| 247 |
-
|
| 248 |
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
|
|
|
| 253 |
)
|
| 254 |
-
chunks = text_splitter.split_text(chapter_text)
|
| 255 |
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
|
|
|
|
|
|
|
|
|
| 272 |
|
| 273 |
-
|
|
|
|
| 274 |
|
| 275 |
-
#
|
| 276 |
-
st.
|
|
|
|
| 277 |
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
"
|
| 282 |
-
"mrm8488/t5-base-finetuned-question-generation-ap": "Question Generation",
|
| 283 |
-
"declare-lab/flan-alpaca-base": "Alpaca Base"
|
| 284 |
-
}
|
| 285 |
|
| 286 |
-
#
|
| 287 |
-
|
| 288 |
-
st.subheader("Hugging Face Token Status")
|
| 289 |
-
|
| 290 |
-
# Check token validity
|
| 291 |
-
token_valid = check_token_validity()
|
| 292 |
-
st.session_state.token_valid = token_valid
|
| 293 |
-
|
| 294 |
-
col1, col2 = st.columns(2)
|
| 295 |
-
with col1:
|
| 296 |
-
st.write(f"Token is set: {'β
Yes' if os.getenv('HF_API_KEY') else 'β No'}")
|
| 297 |
-
with col2:
|
| 298 |
-
st.write(f"Token is valid: {'β
Yes' if token_valid else 'β No'}")
|
| 299 |
-
|
| 300 |
-
if os.getenv('HF_API_KEY'):
|
| 301 |
-
st.markdown("""
|
| 302 |
-
<div class="info">
|
| 303 |
-
<p>Your token is set but we're still having issues. Try these steps:</p>
|
| 304 |
-
<ol>
|
| 305 |
-
<li>Visit the model page for your selected model</li>
|
| 306 |
-
<li>Click "Agree and access repository"</li>
|
| 307 |
-
<li>Wait 5-10 minutes for changes to propagate</li>
|
| 308 |
-
<li>Try a different model from the dropdown</li>
|
| 309 |
-
</ol>
|
| 310 |
-
</div>
|
| 311 |
-
""", unsafe_allow_html=True)
|
| 312 |
-
else:
|
| 313 |
-
st.markdown("""
|
| 314 |
-
<div class="error">
|
| 315 |
-
<p>Token is not set! Add it in your Space secrets:</p>
|
| 316 |
-
<ol>
|
| 317 |
-
<li>Go to your Space β Settings β Secrets</li>
|
| 318 |
-
<li>Add <code>HF_API_KEY</code> with your token</li>
|
| 319 |
-
<li>Redeploy the Space</li>
|
| 320 |
-
</ol>
|
| 321 |
-
<p>Get your token: <a href="https://huggingface.co/settings/tokens" target="_blank">https://huggingface.co/settings/tokens</a></p>
|
| 322 |
-
</div>
|
| 323 |
-
""", unsafe_allow_html=True)
|
| 324 |
|
| 325 |
-
#
|
| 326 |
-
with
|
| 327 |
-
st.subheader("
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 334 |
|
| 335 |
-
#
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
help="Some models require accepting terms on Hugging Face"
|
| 348 |
-
)
|
| 349 |
-
|
| 350 |
-
# Navigation tabs
|
| 351 |
-
selected_tab = option_menu(
|
| 352 |
-
None,
|
| 353 |
-
["Ask Questions", "Generate Chapter Q&A", "History"],
|
| 354 |
-
icons=["chat", "book", "clock-history"],
|
| 355 |
-
menu_icon="cast",
|
| 356 |
-
default_index=0,
|
| 357 |
-
orientation="horizontal",
|
| 358 |
-
styles={
|
| 359 |
-
"container": {"padding": "0!important", "background-color": "#f9f9f9"},
|
| 360 |
-
"nav-link": {"font-size": "16px", "font-weight": "bold"},
|
| 361 |
-
"nav-link-selected": {"background": "linear-gradient(to right, #3a86ff, #ff4b4b)"},
|
| 362 |
-
}
|
| 363 |
-
)
|
| 364 |
-
|
| 365 |
-
# Question Answering Tab
|
| 366 |
-
if selected_tab == "Ask Questions":
|
| 367 |
-
st.markdown("### π¬ Ask Questions About Your Document")
|
| 368 |
-
user_question = st.text_input("Type your question here:", key="user_question")
|
| 369 |
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
if answer:
|
| 374 |
-
st.markdown(f"<div class='card'><b>Answer:</b> {answer}</div>", unsafe_allow_html=True)
|
| 375 |
-
|
| 376 |
-
with st.expander("π See source passages"):
|
| 377 |
-
for i, doc in enumerate(docs):
|
| 378 |
-
st.markdown(f"**Passage {i+1}:** {doc.page_content[:500]}...")
|
| 379 |
-
|
| 380 |
-
# Chapter Q&A Generation Tab
|
| 381 |
-
elif selected_tab == "Generate Chapter Q&A":
|
| 382 |
-
st.markdown("### π Generate Q&A for Specific Chapter")
|
| 383 |
-
col1, col2 = st.columns(2)
|
| 384 |
-
with col1:
|
| 385 |
-
start_page = st.number_input("Start Page", min_value=1, max_value=len(st.session_state.pages), value=1)
|
| 386 |
-
with col2:
|
| 387 |
-
end_page = st.number_input("End Page", min_value=1, max_value=len(st.session_state.pages), value=min(5, len(st.session_state.pages)))
|
| 388 |
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
st.markdown(f"""
|
| 396 |
-
<div class='card'>
|
| 397 |
-
<b>Q{i+1}:</b> {question}<br>
|
| 398 |
-
<b>A{i+1}:</b> {answer}
|
| 399 |
-
</div>
|
| 400 |
-
""", unsafe_allow_html=True)
|
| 401 |
-
else:
|
| 402 |
-
st.warning("No Q&A pairs generated. Try a different page range.")
|
| 403 |
-
|
| 404 |
-
# History Tab
|
| 405 |
-
elif selected_tab == "History":
|
| 406 |
-
st.markdown("### β³ Question History")
|
| 407 |
-
if not st.session_state.history:
|
| 408 |
-
st.info("No questions asked yet.")
|
| 409 |
-
else:
|
| 410 |
-
for i, item in enumerate(reversed(st.session_state.history)):
|
| 411 |
-
with st.expander(f"Q{i+1}: {item['question']} ({MODEL_OPTIONS.get(item['model'], item['model'])})"):
|
| 412 |
-
st.markdown(f"**Answer:** {item['answer']}")
|
| 413 |
-
st.markdown("**Source Passages:**")
|
| 414 |
-
for j, source in enumerate(item['sources']):
|
| 415 |
-
st.markdown(f"{j+1}. {source[:500]}...")
|
| 416 |
|
| 417 |
# Footer
|
| 418 |
st.markdown("---")
|
| 419 |
-
st.markdown(
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
</
|
| 423 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import os
|
| 3 |
+
import tempfile
|
| 4 |
+
from langchain_community.document_loaders import PyPDFLoader
|
| 5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
|
| 6 |
from langchain_community.vectorstores import FAISS
|
| 7 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 8 |
+
from langchain_community.chat_models import ChatOllama
|
| 9 |
+
from langchain.chains import RetrievalQA
|
| 10 |
+
from langchain.prompts import PromptTemplate
|
| 11 |
+
from langchain_core.runnables import RunnablePassthrough
|
| 12 |
+
from langchain_core.output_parsers import StrOutputParser
|
| 13 |
+
import base64
|
| 14 |
|
| 15 |
+
# Set page config
|
| 16 |
st.set_page_config(
|
| 17 |
+
page_title="EduQuery - Smart PDF Assistant",
|
| 18 |
page_icon="π",
|
| 19 |
layout="wide",
|
| 20 |
initial_sidebar_state="collapsed"
|
| 21 |
)
|
| 22 |
|
| 23 |
+
# Custom CSS for colorful UI
|
| 24 |
+
def local_css(file_name):
|
| 25 |
+
with open(file_name) as f:
|
| 26 |
+
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
|
| 27 |
+
|
| 28 |
+
local_css("style.css")
|
| 29 |
+
|
| 30 |
+
# Header with gradient
|
| 31 |
st.markdown("""
|
| 32 |
+
<div class="header">
|
| 33 |
+
<h1>π EduQuery</h1>
|
| 34 |
+
<p>Smart PDF Assistant for Students</p>
|
| 35 |
+
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
""", unsafe_allow_html=True)
|
| 37 |
|
| 38 |
# Initialize session state
|
| 39 |
+
if "vector_store" not in st.session_state:
|
|
|
|
|
|
|
| 40 |
st.session_state.vector_store = None
|
| 41 |
+
if "messages" not in st.session_state:
|
| 42 |
+
st.session_state.messages = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
+
# Model selection
|
| 45 |
+
MODEL_NAME = "nous-hermes2" # Best open-source model for instruction following
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
+
# PDF Processing
|
| 48 |
def process_pdf(pdf_file):
|
| 49 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file:
|
| 50 |
+
tmp_file.write(pdf_file.getvalue())
|
| 51 |
+
tmp_path = tmp_file.name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
+
loader = PyPDFLoader(tmp_path)
|
| 54 |
+
docs = loader.load()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
| 57 |
+
chunk_size=1000,
|
| 58 |
+
chunk_overlap=200,
|
| 59 |
+
length_function=len
|
| 60 |
+
)
|
| 61 |
+
chunks = text_splitter.split_documents(docs)
|
|
|
|
| 62 |
|
| 63 |
+
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-base-en-v1.5")
|
| 64 |
+
vector_store = FAISS.from_documents(chunks, embeddings)
|
|
|
|
| 65 |
|
| 66 |
+
os.unlink(tmp_path)
|
| 67 |
+
return vector_store
|
| 68 |
+
|
| 69 |
+
# RAG Setup
|
| 70 |
+
def setup_qa_chain(vector_store):
|
| 71 |
+
llm = ChatOllama(model=MODEL_NAME, temperature=0.3)
|
| 72 |
|
| 73 |
+
custom_prompt = """
|
| 74 |
+
You are an expert academic assistant. Answer the question based only on the following context:
|
| 75 |
{context}
|
| 76 |
|
| 77 |
Question: {question}
|
|
|
|
|
|
|
| 78 |
|
| 79 |
+
Provide a clear, concise answer with page number references. If unsure, say "I couldn't find this information in the document".
|
| 80 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
+
prompt = PromptTemplate(
|
| 83 |
+
template=custom_prompt,
|
| 84 |
+
input_variables=["context", "question"]
|
| 85 |
+
)
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
+
retriever = vector_store.as_retriever(search_kwargs={"k": 3})
|
| 88 |
|
| 89 |
+
qa_chain = (
|
| 90 |
+
{"context": retriever, "question": RunnablePassthrough()}
|
| 91 |
+
| prompt
|
| 92 |
+
| llm
|
| 93 |
+
| StrOutputParser()
|
| 94 |
)
|
|
|
|
| 95 |
|
| 96 |
+
return qa_chain
|
| 97 |
+
|
| 98 |
+
# Generate questions from chapter
|
| 99 |
+
def generate_chapter_questions(vector_store, chapter_title):
|
| 100 |
+
llm = ChatOllama(model=MODEL_NAME, temperature=0.7)
|
| 101 |
+
|
| 102 |
+
prompt = PromptTemplate(
|
| 103 |
+
input_variables=["chapter_title"],
|
| 104 |
+
template="""
|
| 105 |
+
You are an expert educator. Generate 5 important questions and answers about '{chapter_title}'
|
| 106 |
+
that would help students understand key concepts. Format as:
|
| 107 |
+
|
| 108 |
+
Q1: [Question]
|
| 109 |
+
A1: [Answer with page reference]
|
| 110 |
+
|
| 111 |
+
Q2: [Question]
|
| 112 |
+
A2: [Answer with page reference]
|
| 113 |
+
..."""
|
| 114 |
+
)
|
| 115 |
|
| 116 |
+
chain = prompt | llm | StrOutputParser()
|
| 117 |
+
return chain.invoke({"chapter_title": chapter_title})
|
| 118 |
|
| 119 |
+
# File upload section
|
| 120 |
+
st.subheader("π€ Upload Your Textbook/Notes")
|
| 121 |
+
uploaded_file = st.file_uploader("", type="pdf", accept_multiple_files=False)
|
| 122 |
|
| 123 |
+
if uploaded_file:
|
| 124 |
+
with st.spinner("Processing PDF..."):
|
| 125 |
+
st.session_state.vector_store = process_pdf(uploaded_file)
|
| 126 |
+
st.success("PDF processed successfully! You can now ask questions.")
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
+
# Main content columns
|
| 129 |
+
col1, col2 = st.columns([1, 2])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
+
# Chapter-based Q&A Generator
|
| 132 |
+
with col1:
|
| 133 |
+
st.subheader("π Generate Chapter Questions")
|
| 134 |
+
chapter_title = st.text_input("Enter chapter title/section name:")
|
| 135 |
+
|
| 136 |
+
if st.button("Generate Q&A") and chapter_title and st.session_state.vector_store:
|
| 137 |
+
with st.spinner(f"Generating questions about {chapter_title}..."):
|
| 138 |
+
questions = generate_chapter_questions(
|
| 139 |
+
st.session_state.vector_store,
|
| 140 |
+
chapter_title
|
| 141 |
+
)
|
| 142 |
+
st.markdown(f"<div class='qa-box'>{questions}</div>", unsafe_allow_html=True)
|
| 143 |
+
elif chapter_title and not st.session_state.vector_store:
|
| 144 |
+
st.warning("Please upload a PDF first")
|
| 145 |
|
| 146 |
+
# Chat interface
|
| 147 |
+
with col2:
|
| 148 |
+
st.subheader("π¬ Ask Anything About the Document")
|
| 149 |
+
|
| 150 |
+
for message in st.session_state.messages:
|
| 151 |
+
with st.chat_message(message["role"]):
|
| 152 |
+
st.markdown(message["content"])
|
| 153 |
+
|
| 154 |
+
if prompt := st.chat_input("Your question..."):
|
| 155 |
+
if not st.session_state.vector_store:
|
| 156 |
+
st.warning("Please upload a PDF first")
|
| 157 |
+
st.stop()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 160 |
+
with st.chat_message("user"):
|
| 161 |
+
st.markdown(prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
+
with st.chat_message("assistant"):
|
| 164 |
+
with st.spinner("Thinking..."):
|
| 165 |
+
qa_chain = setup_qa_chain(st.session_state.vector_store)
|
| 166 |
+
response = qa_chain.invoke(prompt)
|
| 167 |
+
st.markdown(response)
|
| 168 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
# Footer
|
| 171 |
st.markdown("---")
|
| 172 |
+
st.markdown(
|
| 173 |
+
"""
|
| 174 |
+
<div class="footer">
|
| 175 |
+
<p>EduQuery - Helping students learn smarter β’ Powered by Nous-Hermes2 and LangChain</p>
|
| 176 |
+
</div>
|
| 177 |
+
""",
|
| 178 |
+
unsafe_allow_html=True
|
| 179 |
+
)
|