Upload 4 files
Browse files
README.md
CHANGED
|
@@ -1,12 +1,13 @@
|
|
| 1 |
---
|
| 2 |
-
title: Segment
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 3.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Segment-Anything-Video
|
| 3 |
+
emoji: 🐨
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: yellow
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 3.19.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
license: apache-2.0
|
| 11 |
---
|
| 12 |
|
| 13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from demo import automask_image_app, automask_video_app, sahi_autoseg_app
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def image_app():
|
| 6 |
+
with gr.Blocks():
|
| 7 |
+
with gr.Row():
|
| 8 |
+
with gr.Column():
|
| 9 |
+
seg_automask_image_file = gr.Image(type="filepath").style(height=260)
|
| 10 |
+
with gr.Row():
|
| 11 |
+
with gr.Column():
|
| 12 |
+
seg_automask_image_model_type = gr.Dropdown(
|
| 13 |
+
choices=[
|
| 14 |
+
"vit_h",
|
| 15 |
+
"vit_l",
|
| 16 |
+
"vit_b",
|
| 17 |
+
],
|
| 18 |
+
value="vit_l",
|
| 19 |
+
label="Model Type",
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
seg_automask_image_min_area = gr.Number(
|
| 23 |
+
value=0,
|
| 24 |
+
label="Min Area",
|
| 25 |
+
)
|
| 26 |
+
with gr.Row():
|
| 27 |
+
with gr.Column():
|
| 28 |
+
seg_automask_image_points_per_side = gr.Slider(
|
| 29 |
+
minimum=0,
|
| 30 |
+
maximum=32,
|
| 31 |
+
step=2,
|
| 32 |
+
value=16,
|
| 33 |
+
label="Points per Side",
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
seg_automask_image_points_per_batch = gr.Slider(
|
| 37 |
+
minimum=0,
|
| 38 |
+
maximum=64,
|
| 39 |
+
step=2,
|
| 40 |
+
value=64,
|
| 41 |
+
label="Points per Batch",
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
seg_automask_image_predict = gr.Button(value="Generator")
|
| 45 |
+
|
| 46 |
+
with gr.Column():
|
| 47 |
+
output_image = gr.Image()
|
| 48 |
+
|
| 49 |
+
seg_automask_image_predict.click(
|
| 50 |
+
fn=automask_image_app,
|
| 51 |
+
inputs=[
|
| 52 |
+
seg_automask_image_file,
|
| 53 |
+
seg_automask_image_model_type,
|
| 54 |
+
seg_automask_image_points_per_side,
|
| 55 |
+
seg_automask_image_points_per_batch,
|
| 56 |
+
seg_automask_image_min_area,
|
| 57 |
+
],
|
| 58 |
+
outputs=[output_image],
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def video_app():
|
| 63 |
+
with gr.Blocks():
|
| 64 |
+
with gr.Row():
|
| 65 |
+
with gr.Column():
|
| 66 |
+
seg_automask_video_file = gr.Video().style(height=260)
|
| 67 |
+
with gr.Row():
|
| 68 |
+
with gr.Column():
|
| 69 |
+
seg_automask_video_model_type = gr.Dropdown(
|
| 70 |
+
choices=[
|
| 71 |
+
"vit_h",
|
| 72 |
+
"vit_l",
|
| 73 |
+
"vit_b",
|
| 74 |
+
],
|
| 75 |
+
value="vit_l",
|
| 76 |
+
label="Model Type",
|
| 77 |
+
)
|
| 78 |
+
seg_automask_video_min_area = gr.Number(
|
| 79 |
+
value=1000,
|
| 80 |
+
label="Min Area",
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
with gr.Row():
|
| 84 |
+
with gr.Column():
|
| 85 |
+
seg_automask_video_points_per_side = gr.Slider(
|
| 86 |
+
minimum=0,
|
| 87 |
+
maximum=32,
|
| 88 |
+
step=2,
|
| 89 |
+
value=16,
|
| 90 |
+
label="Points per Side",
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
seg_automask_video_points_per_batch = gr.Slider(
|
| 94 |
+
minimum=0,
|
| 95 |
+
maximum=64,
|
| 96 |
+
step=2,
|
| 97 |
+
value=64,
|
| 98 |
+
label="Points per Batch",
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
seg_automask_video_predict = gr.Button(value="Generator")
|
| 102 |
+
with gr.Column():
|
| 103 |
+
output_video = gr.Video()
|
| 104 |
+
|
| 105 |
+
seg_automask_video_predict.click(
|
| 106 |
+
fn=automask_video_app,
|
| 107 |
+
inputs=[
|
| 108 |
+
seg_automask_video_file,
|
| 109 |
+
seg_automask_video_model_type,
|
| 110 |
+
seg_automask_video_points_per_side,
|
| 111 |
+
seg_automask_video_points_per_batch,
|
| 112 |
+
seg_automask_video_min_area,
|
| 113 |
+
],
|
| 114 |
+
outputs=[output_video],
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def sahi_app():
|
| 119 |
+
with gr.Blocks():
|
| 120 |
+
with gr.Row():
|
| 121 |
+
with gr.Column():
|
| 122 |
+
sahi_image_file = gr.Image(type="filepath").style(height=260)
|
| 123 |
+
sahi_autoseg_model_type = gr.Dropdown(
|
| 124 |
+
choices=[
|
| 125 |
+
"vit_h",
|
| 126 |
+
"vit_l",
|
| 127 |
+
"vit_b",
|
| 128 |
+
],
|
| 129 |
+
value="vit_l",
|
| 130 |
+
label="Sam Model Type",
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
with gr.Row():
|
| 134 |
+
with gr.Column():
|
| 135 |
+
sahi_model_type = gr.Dropdown(
|
| 136 |
+
choices=[
|
| 137 |
+
"yolov5",
|
| 138 |
+
"yolov8",
|
| 139 |
+
],
|
| 140 |
+
value="yolov5",
|
| 141 |
+
label="Detector Model Type",
|
| 142 |
+
)
|
| 143 |
+
sahi_image_size = gr.Slider(
|
| 144 |
+
minimum=0,
|
| 145 |
+
maximum=1600,
|
| 146 |
+
step=32,
|
| 147 |
+
value=640,
|
| 148 |
+
label="Image Size",
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
sahi_overlap_width = gr.Slider(
|
| 152 |
+
minimum=0,
|
| 153 |
+
maximum=1,
|
| 154 |
+
step=0.1,
|
| 155 |
+
value=0.2,
|
| 156 |
+
label="Overlap Width",
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
sahi_slice_width = gr.Slider(
|
| 160 |
+
minimum=0,
|
| 161 |
+
maximum=640,
|
| 162 |
+
step=32,
|
| 163 |
+
value=256,
|
| 164 |
+
label="Slice Width",
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
with gr.Row():
|
| 168 |
+
with gr.Column():
|
| 169 |
+
sahi_model_path = gr.Dropdown(
|
| 170 |
+
choices=[
|
| 171 |
+
"yolov5l.pt",
|
| 172 |
+
"yolov5l6.pt",
|
| 173 |
+
"yolov8l.pt",
|
| 174 |
+
"yolov8x.pt"
|
| 175 |
+
],
|
| 176 |
+
value="yolov5l6.pt",
|
| 177 |
+
label="Detector Model Path",
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
sahi_conf_th = gr.Slider(
|
| 181 |
+
minimum=0,
|
| 182 |
+
maximum=1,
|
| 183 |
+
step=0.1,
|
| 184 |
+
value=0.2,
|
| 185 |
+
label="Confidence Threshold",
|
| 186 |
+
)
|
| 187 |
+
sahi_overlap_height = gr.Slider(
|
| 188 |
+
minimum=0,
|
| 189 |
+
maximum=1,
|
| 190 |
+
step=0.1,
|
| 191 |
+
value=0.2,
|
| 192 |
+
label="Overlap Height",
|
| 193 |
+
)
|
| 194 |
+
sahi_slice_height = gr.Slider(
|
| 195 |
+
minimum=0,
|
| 196 |
+
maximum=640,
|
| 197 |
+
step=32,
|
| 198 |
+
value=256,
|
| 199 |
+
label="Slice Height",
|
| 200 |
+
)
|
| 201 |
+
sahi_image_predict = gr.Button(value="Generator")
|
| 202 |
+
|
| 203 |
+
with gr.Column():
|
| 204 |
+
output_image = gr.Image()
|
| 205 |
+
|
| 206 |
+
sahi_image_predict.click(
|
| 207 |
+
fn=sahi_autoseg_app,
|
| 208 |
+
inputs=[
|
| 209 |
+
sahi_image_file,
|
| 210 |
+
sahi_autoseg_model_type,
|
| 211 |
+
sahi_model_type,
|
| 212 |
+
sahi_model_path,
|
| 213 |
+
sahi_conf_th,
|
| 214 |
+
sahi_image_size,
|
| 215 |
+
sahi_slice_height,
|
| 216 |
+
sahi_slice_width,
|
| 217 |
+
sahi_overlap_height,
|
| 218 |
+
sahi_overlap_width,
|
| 219 |
+
|
| 220 |
+
],
|
| 221 |
+
outputs=[output_image],
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
def metaseg_app():
|
| 225 |
+
app = gr.Blocks()
|
| 226 |
+
with app:
|
| 227 |
+
with gr.Row():
|
| 228 |
+
with gr.Column():
|
| 229 |
+
with gr.Tab("Image"):
|
| 230 |
+
image_app()
|
| 231 |
+
with gr.Tab("Video"):
|
| 232 |
+
video_app()
|
| 233 |
+
with gr.Tab("SAHI"):
|
| 234 |
+
sahi_app()
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
app.queue(concurrency_count=1)
|
| 238 |
+
app.launch(debug=True, enable_queue=True)
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
if __name__ == "__main__":
|
| 242 |
+
metaseg_app()
|
demo.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from metaseg import SegAutoMaskPredictor, SegManualMaskPredictor, SahiAutoSegmentation, sahi_sliced_predict
|
| 2 |
+
|
| 3 |
+
# For image
|
| 4 |
+
|
| 5 |
+
def automask_image_app(image_path, model_type, points_per_side, points_per_batch, min_area):
|
| 6 |
+
SegAutoMaskPredictor().image_predict(
|
| 7 |
+
source=image_path,
|
| 8 |
+
model_type=model_type, # vit_l, vit_h, vit_b
|
| 9 |
+
points_per_side=points_per_side,
|
| 10 |
+
points_per_batch=points_per_batch,
|
| 11 |
+
min_area=min_area,
|
| 12 |
+
output_path="output.png",
|
| 13 |
+
show=False,
|
| 14 |
+
save=True,
|
| 15 |
+
)
|
| 16 |
+
return "output.png"
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
# For video
|
| 20 |
+
|
| 21 |
+
def automask_video_app(video_path, model_type, points_per_side, points_per_batch, min_area):
|
| 22 |
+
SegAutoMaskPredictor().video_predict(
|
| 23 |
+
source=video_path,
|
| 24 |
+
model_type=model_type, # vit_l, vit_h, vit_b
|
| 25 |
+
points_per_side=points_per_side,
|
| 26 |
+
points_per_batch=points_per_batch,
|
| 27 |
+
min_area=min_area,
|
| 28 |
+
output_path="output.mp4",
|
| 29 |
+
)
|
| 30 |
+
return "output.mp4"
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
# For manuel box and point selection
|
| 34 |
+
|
| 35 |
+
def manual_app(image_path, model_type, input_point, input_label, input_box, multimask_output, random_color):
|
| 36 |
+
SegManualMaskPredictor().image_predict(
|
| 37 |
+
source=image_path,
|
| 38 |
+
model_type=model_type, # vit_l, vit_h, vit_b
|
| 39 |
+
input_point=input_point,
|
| 40 |
+
input_label=input_label,
|
| 41 |
+
input_box=input_box,
|
| 42 |
+
multimask_output=multimask_output,
|
| 43 |
+
random_color=random_color,
|
| 44 |
+
output_path="output.png",
|
| 45 |
+
show=False,
|
| 46 |
+
save=True,
|
| 47 |
+
)
|
| 48 |
+
return "output.png"
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
# For sahi sliced prediction
|
| 52 |
+
|
| 53 |
+
def sahi_autoseg_app(
|
| 54 |
+
image_path,
|
| 55 |
+
sam_model_type,
|
| 56 |
+
detection_model_type,
|
| 57 |
+
detection_model_path,
|
| 58 |
+
conf_th,
|
| 59 |
+
image_size,
|
| 60 |
+
slice_height,
|
| 61 |
+
slice_width,
|
| 62 |
+
overlap_height_ratio,
|
| 63 |
+
overlap_width_ratio,
|
| 64 |
+
):
|
| 65 |
+
boxes = sahi_sliced_predict(
|
| 66 |
+
image_path=image_path,
|
| 67 |
+
detection_model_type=detection_model_type, # yolov8, detectron2, mmdetection, torchvision
|
| 68 |
+
detection_model_path=detection_model_path,
|
| 69 |
+
conf_th=conf_th,
|
| 70 |
+
image_size=image_size,
|
| 71 |
+
slice_height=slice_height,
|
| 72 |
+
slice_width=slice_width,
|
| 73 |
+
overlap_height_ratio=overlap_height_ratio,
|
| 74 |
+
overlap_width_ratio=overlap_width_ratio,
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
SahiAutoSegmentation().predict(
|
| 78 |
+
source=image_path,
|
| 79 |
+
model_type=sam_model_type,
|
| 80 |
+
input_box=boxes,
|
| 81 |
+
multimask_output=False,
|
| 82 |
+
random_color=False,
|
| 83 |
+
show=False,
|
| 84 |
+
save=True,
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
return "output.png"
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
metaseg==0.5.8
|
| 2 |
+
sahi
|
| 3 |
+
yolov5
|