Spaces:
Paused
Paused
File size: 12,507 Bytes
1ac2018 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
import os
import json
from subprocess import call, DEVNULL
import numpy as np
import shutil
import multiprocessing as mp
from lib.util.render import _install_blender, sphere_hammersley_sequence, BLENDER_PATH
try:
mp.set_start_method("spawn", force=False)
except RuntimeError:
pass
def _get_optimal_threads(num_workers):
"""Calculate optimal CPU threads per Blender instance."""
total_cores = os.cpu_count() or 4
# Reserve 1 core for system/orchestration if possible
available_cores = max(1, total_cores - 1)
# Distribute remaining cores among workers
threads = max(1, available_cores // num_workers)
# Cap at 4 threads per instance since we are GPU bound anyway
# and too many threads just adds contention
return min(threads, 4)
def _render_views_chunk(file_path, chunk_output_folder, views_chunk, blender_render_engine, cuda_device_id=None, threads=None):
"""Render a subset of views into a chunk-specific folder."""
os.makedirs(chunk_output_folder, exist_ok=True)
# Prepare environment with GPU selection if provided
env = os.environ.copy()
if cuda_device_id is not None:
env["CUDA_VISIBLE_DEVICES"] = str(cuda_device_id)
blender_exec = env.get('BLENDER_HOME', BLENDER_PATH)
if not os.path.exists(blender_exec) and blender_exec == BLENDER_PATH:
blender_exec = 'blender' # Fallback if specific path missing
output_root = os.path.dirname(os.path.dirname(chunk_output_folder))
blender_cache_dir = os.path.join(output_root, "blender_cache")
os.makedirs(blender_cache_dir, exist_ok=True)
env["XDG_CACHE_HOME"] = blender_cache_dir
args = [
blender_exec, '-b',
'-P', os.path.join(os.getcwd(), 'third_party/TRELLIS/dataset_toolkits', 'blender_script', 'render.py'),
'--',
'--views', json.dumps(views_chunk),
'--object', os.path.expanduser(file_path),
'--resolution', '512',
'--output_folder', chunk_output_folder,
'--engine', blender_render_engine,
'--save_mesh',
]
if threads:
args.extend(['--threads', str(threads)])
if file_path.endswith('.blend'):
args.insert(1, file_path)
call(args, stdout=DEVNULL, stderr=DEVNULL, env=env)
def _merge_blender_chunks(output_folder, chunk_infos, file_path, blender_render_engine):
"""Merge chunk_* folders into the main output_folder and write transforms.json."""
frames = []
mesh_copied = False
# Track global index for sequential renaming
global_idx = 0
for i, (chunk_path, chunk_views) in enumerate(chunk_infos):
if not os.path.isdir(chunk_path):
# Even if directory is missing (shouldn't happen due to retry), we advance index to keep alignment if possible
# But if directory missing, we likely failed.
# Let's assume retry logic works or we fail hard.
global_idx += len(chunk_views)
continue
# Copy mesh.ply once (from first chunk that has it)
mesh_src = os.path.join(chunk_path, "mesh.ply")
mesh_dst = os.path.join(output_folder, "mesh.ply")
if not mesh_copied and os.path.exists(mesh_src):
shutil.copy2(mesh_src, mesh_dst)
mesh_copied = True
chunk_transforms_path = os.path.join(chunk_path, "transforms.json")
# Simple retry logic if chunk failed
if not os.path.exists(chunk_transforms_path):
print(f"[merge_chunks] Warning: missing transforms.json in {chunk_path}, re-rendering chunk.")
shutil.rmtree(chunk_path, ignore_errors=True)
# Use default 1 thread for retry to be safe
_render_views_chunk(file_path, chunk_path, chunk_views, blender_render_engine, threads=2)
if not os.path.exists(chunk_transforms_path):
# If still missing, raise error
raise RuntimeError(f"Unable to generate transforms.json for {chunk_path}")
with open(chunk_transforms_path, "r") as f:
chunk_data = json.load(f)
chunk_frames = chunk_data.get("frames", [])
if not chunk_frames:
# Empty frames could mean render failure
raise RuntimeError(f"No frames found in {chunk_transforms_path}")
frame_lookup = {
os.path.basename(frame.get("file_path", "")): frame for frame in chunk_frames
}
# Sort files to ensure we map them to indices consistently if render.py uses ordered names (e.g. 000.png)
chunk_files = sorted([
f for f in os.listdir(chunk_path)
if f.lower().endswith((".png", ".jpg", ".jpeg"))
])
# We assume the sorted files correspond to the chunk_views in order
# If render.py produced '000.png', '001.png', ... they correspond to chunk_views[0], chunk_views[1]...
for idx, img_name in enumerate(chunk_files):
src = os.path.join(chunk_path, img_name)
if img_name not in frame_lookup:
print(f"[merge_chunks] Warning: no metadata for {img_name} in {chunk_transforms_path}, skipping image.")
# os.remove(src) # Don't remove, just skip
continue
# Rename to sequential number based on global index
# Format: 000.png, 001.png, etc.
# Or image_000.png if preferred, but adhering to existing project style (struct_renders uses 000.png)
# User request: "something like image_{num}.png"
# Interpreting as keeping the number sequential and using a clean format.
# Since structure renders used 000.png, I'll assume {num:03d}.png is the safe "image number" format.
# However, if I must follow "image_{num}.png" strictly, I would add the prefix.
# I will use just the number to maintain compatibility with any dataset loaders expecting standard indices.
# Actually, render.py usually outputs 000.png.
# The logic: global_idx tracks the start of this chunk.
# The current image is the idx-th image in this chunk.
current_global_num = global_idx + idx
dst_name = f"{current_global_num:03d}.png"
dst = os.path.join(output_folder, dst_name)
shutil.move(src, dst)
frame = frame_lookup[img_name].copy()
frame["file_path"] = dst_name
frames.append(frame)
# Advance global index by number of views in this chunk (or number of files processed?)
# Better to advance by chunk_views length to keep alignment with original views list
global_idx += len(chunk_views)
shutil.rmtree(chunk_path)
if not frames:
raise RuntimeError("No frames were merged when building transforms.json")
transforms_path = os.path.join(output_folder, "transforms.json")
with open(transforms_path, "w") as f:
json.dump({"frames": frames}, f, indent=4)
def _run_single_render(file_path, output_folder, views, blender_render_engine):
# For single render, we can use more CPU threads since we are the only process
threads = min(os.cpu_count() or 4, 8)
output_root = os.path.dirname(output_folder)
blender_cache_dir = os.path.join(output_root, "blender_cache")
os.makedirs(blender_cache_dir, exist_ok=True)
env = os.environ.copy()
env["XDG_CACHE_HOME"] = blender_cache_dir
blender_exec = os.environ.get('BLENDER_HOME', BLENDER_PATH)
if not os.path.exists(blender_exec) and blender_exec == BLENDER_PATH:
blender_exec = 'blender' # Fallback
args = [
# 'xvfb-run',
# "-s", "-screen 0 1920x1080x24",
blender_exec, '-b',
'-P', os.path.join(os.getcwd(), 'third_party/TRELLIS/dataset_toolkits', 'blender_script', 'render.py'),
'--',
'--views', json.dumps(views),
'--object', os.path.expanduser(file_path),
'--resolution', '512',
'--output_folder', output_folder,
'--engine', blender_render_engine,
'--save_mesh',
'--threads', str(threads)
]
if file_path.endswith('.blend'):
args.insert(1, file_path)
# call(args, stdout=DEVNULL, stderr=DEVNULL)
call(args, env=env)
def render_all_views(file_path, output_folder, num_views=150, blender_render_engine="CYCLES", num_workers=None):
_install_blender()
# Build camera {yaw, pitch, radius, fov}
yaws = []
pitchs = []
offset = (np.random.rand(), np.random.rand())
for i in range(num_views):
y, p = sphere_hammersley_sequence(i, num_views, offset)
yaws.append(y)
pitchs.append(p)
radius = [2] * num_views
fov = [40 / 180 * np.pi] * num_views
views = [{'yaw': y, 'pitch': p, 'radius': r, 'fov': f} for y, p, r, f in zip(yaws, pitchs, radius, fov)]
# Determine GPU availability using torch if available (safe check)
num_gpus = 0
try:
import torch
if torch.cuda.is_available():
num_gpus = torch.cuda.device_count()
except ImportError:
pass
# Smart worker count logic
if num_workers is None:
if blender_render_engine == 'CYCLES':
if num_gpus > 0:
# To maximize VRAM usage and overlap CPU preparation with GPU rendering,
# we can run multiple concurrent Blender instances per GPU.
# For object-level scenes, 2-3 workers per GPU is usually the sweet spot.
# Too many will cause context thrashing; too few leaves VRAM idle.
WORKERS_PER_GPU = 3
num_workers = num_gpus * WORKERS_PER_GPU
else:
# No GPU found: fallback to CPU. Parallelizing CPU might help if RAM permits.
# Cap at 4 to be safe.
num_workers = min(os.cpu_count() or 4, 4)
else:
# For non-cycles (e.g. Eevee), we can be slightly more aggressive but still bound by GPU
if num_gpus > 0:
num_workers = num_gpus
else:
num_workers = min(os.cpu_count() or 4, 8)
# Override: Force serial for small batches to avoid startup overhead
# 15 views is small enough that overhead of 2+ processes > gain
if len(views) < 30:
num_workers = 1
if num_workers > 1:
print(f"[render_all_views] Running with {num_workers} workers (GPUs detected: {num_gpus}).")
else:
print(f"[render_all_views] Running serially (GPUs detected: {num_gpus}).")
if num_workers <= 1:
_run_single_render(file_path, output_folder, views, blender_render_engine)
else:
# Multi-process: split views into chunks and render in parallel
num_workers = min(num_workers, num_views)
view_chunks = np.array_split(views, num_workers)
# Convert numpy arrays back to plain lists (json-serializable)
view_chunks = [list(chunk) for chunk in view_chunks]
chunk_infos = []
# Calculate optimal threads per worker
threads_per_worker = _get_optimal_threads(num_workers)
with mp.Pool(processes=num_workers) as pool:
jobs = []
for idx, chunk in enumerate(view_chunks):
chunk_output_folder = os.path.join(output_folder, f"chunk_{idx}")
chunk_infos.append((chunk_output_folder, chunk))
# Assign GPU ID round-robin if GPUs are available
assigned_gpu = None
if num_gpus > 0:
assigned_gpu = idx % num_gpus
jobs.append(
pool.apply_async(
_render_views_chunk,
(file_path, chunk_output_folder, chunk, blender_render_engine, assigned_gpu, threads_per_worker),
)
)
for j in jobs:
j.get()
_merge_blender_chunks(output_folder, chunk_infos, file_path, blender_render_engine)
if os.path.exists(os.path.join(output_folder, 'transforms.json')):
# Return list of rendered image paths
out_renderviews = sorted(
[
os.path.join(output_folder, f)
for f in os.listdir(output_folder)
if f.lower().endswith((".png", ".jpg", ".jpeg"))
]
)
return out_renderviews if out_renderviews else None
return None
|