Spaces:
Paused
Paused
File size: 23,193 Bytes
1ac2018 c816548 1ac2018 fbb5505 1ac2018 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 |
import os
import os.path as osp
import gradio as gr
import spaces
import gc
import trimesh
from PIL import Image
import logging as log
from omegaconf import OmegaConf
import random
import numpy as np
import hashlib
import shutil
from typing import Optional
import torch
from torchvision import transforms
from pycg import vis, image
from pycg import render as pycg_render
import sys
sys.path.append('.')
from lib.util.render import BLENDER_PATH
from third_party.PartField.partfield.model_trainer_pvcnn_only_demo import Model
from lib.opt import appearance, self_similarity
from lib.util import generation, common, pointcloud
import third_party.TRELLIS.trellis.models as models
from demos.custom_utils import render_all_views
# Define project root
PROJECT_ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
# Example Data Mappings (Manual Sync with Generator/Demo)
APP_MESH_EXAMPLES = {
"B01DA8LC0A": "example_data/appearance_mesh/B01DA8LC0A.glb",
"B01DJH73Y6": "example_data/appearance_mesh/B01DJH73Y6.glb",
"B0728KSP33": "example_data/appearance_mesh/B0728KSP33.glb",
"B07B4YXNR8": "example_data/appearance_mesh/B07B4YXNR8.glb",
"B07QC84LP1": "example_data/appearance_mesh/B07QC84LP1.glb",
"B07QFRSC8M": "example_data/appearance_mesh/B07QFRSC8M_zup.glb",
"B082QC7YKR": "example_data/appearance_mesh/B082QC7YKR_zup.glb",
}
APP_MESH_ABS_TO_NAME = {
os.path.abspath(os.path.join(PROJECT_ROOT, v)): k
for k, v in APP_MESH_EXAMPLES.items()
}
# Set BLENDER_HOME for pycg if not set
if "BLENDER_HOME" not in os.environ:
if osp.exists(BLENDER_PATH):
os.environ["BLENDER_HOME"] = BLENDER_PATH
else:
os.environ["BLENDER_HOME"] = "blender"
log.getLogger().setLevel(log.INFO)
log.basicConfig(level=log.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
partfield_config = 'third_party/PartField/config.yaml'
partfield_cfg = OmegaConf.load(partfield_config)
# Helper to calc hash
def file_sha256(path: str, chunk_size: int = 1 << 20) -> str:
h = hashlib.sha256()
if not osp.exists(path): return "nocontent"
with open(path, "rb") as f:
for chunk in iter(lambda: f.read(chunk_size), b""):
h.update(chunk)
return h.hexdigest()
# @spaces.GPU()
def init_partfield(obj_path):
torch.manual_seed(0)
random.seed(0)
np.random.seed(0)
partfield_model = Model(partfield_cfg, obj_path)
partfield_model = partfield_model.to(device)
ckpt = torch.load(partfield_cfg.continue_ckpt, map_location=device, weights_only=False)
state_dict = ckpt.get("state_dict", ckpt)
state_dict = {k.replace("model.", ""): v for k, v in state_dict.items()}
missing, unexpected = partfield_model.load_state_dict(state_dict, strict=False)
if missing:
print("[load_partfield_model] Missing keys:", missing)
if unexpected:
print("[load_partfield_model] Unexpected keys:", unexpected)
partfield_model.eval()
return partfield_model
@spaces.GPU
def partfield_pipeline_predict(obj_path, output_dir, uid_tag):
log.info(f"Extracting PartField feature planes for {uid_tag}...")
gr.Info(f"Extracting PartField feature planes for {uid_tag}...")
seed = int(partfield_cfg.seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
partfield_model = init_partfield(obj_path)
dataloader = partfield_model.predict_dataloader()
batch = next(iter(dataloader))
with torch.no_grad():
with torch.autocast(device_type="cuda", dtype=torch.float16):
batch = {
k: (v.to(device) if torch.is_tensor(v) else v)
for k, v in batch.items()
}
part_planes, _ = partfield_model.predict_step(batch, batch_idx=0)
os.makedirs(output_dir, exist_ok=True)
# Use the explicit uid_tag instead of the one from the model
partfield_save_path = f'{output_dir}/part_feat_{uid_tag}_batch_part_plane.npy'
print(f"SAVING PART FIELD TO: {partfield_save_path}")
np.save(partfield_save_path, part_planes)
del partfield_model
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
return partfield_save_path
class GuideFlow3dPipeline:
def __init__(self):
self.cfg = None
def from_pretrained(self, config):
self.cfg = config
return self
@spaces.GPU
def preprocess(
self,
structure_mesh: str,
convert_yup_to_zup: bool,
output_dir: str,
) -> None:
log.info("Loading structure mesh...")
gr.Info("Loading structure mesh...")
if not structure_mesh.endswith('.glb'):
log.error("Meshes must be in .glb format")
return
current_struct_hash = file_sha256(structure_mesh)
cached_input_copy_path = osp.join(output_dir, "struct_mesh_input.glb")
cached_struct_hash = None
if osp.exists(cached_input_copy_path):
cached_struct_hash = file_sha256(cached_input_copy_path)
use_struct_cache = (cached_struct_hash == current_struct_hash)
print(
f"Use struct cache: {use_struct_cache}",
f"Current struct hash: {current_struct_hash}",
f"Cached input copy hash: {cached_struct_hash}",
f"Input Structure mesh: {structure_mesh}",
f"Checking Structure hash path at: {cached_input_copy_path}"
)
struct_mesh_zup_path = osp.join(output_dir, "struct_mesh_zup.glb")
if use_struct_cache and osp.exists(struct_mesh_zup_path):
log.info("Using cached structure mesh (z-up).")
struct_mesh = trimesh.load(struct_mesh_zup_path, force="mesh")
else:
# Cache miss or mismatch: Regenerate
log.info("Cache miss or mismatch. Regenerating structure mesh...")
# 1. Save the exact input copy for future hash checks
shutil.copy2(structure_mesh, cached_input_copy_path)
# Save hash file for folder scanning
with open(osp.join(output_dir, "struct_mesh.hash"), "w") as f:
f.write(current_struct_hash)
# 2. Process
struct_mesh = trimesh.load(structure_mesh, force='mesh')
if convert_yup_to_zup:
struct_mesh = pointcloud.convert_mesh_yup_to_zup(struct_mesh)
struct_mesh.export(struct_mesh_zup_path)
log.info(f"Rendering structure mesh for {self.cfg.num_views // 10} views...")
gr.Info(f"Rendering structure mesh for {self.cfg.num_views // 10} views...")
struct_render_dir = osp.join(output_dir, 'struct_renders')
common.ensure_dir(struct_render_dir)
struct_mesh_ply_path = osp.join(struct_render_dir, "mesh.ply")
struct_transforms_path = osp.join(struct_render_dir, "transforms.json")
if use_struct_cache and osp.exists(struct_mesh_ply_path) and osp.exists(struct_transforms_path):
log.info("Using cached structure renders.")
out_renderviews = sorted(
[
osp.join(struct_render_dir, f)
for f in os.listdir(struct_render_dir)
if f.lower().endswith((".png", ".jpg", ".jpeg"))
]
)
else:
out_renderviews = render_all_views(
struct_mesh_zup_path,
struct_render_dir,
num_views=self.cfg.num_views // 10,
num_workers=None
)
if not out_renderviews:
log.error("Structure rendering failed! Aborting pipeline.")
return None
voxel_dir = osp.join(output_dir, 'voxels')
common.ensure_dir(voxel_dir)
log.info("Voxelizing structure mesh...")
gr.Info("Voxelizing structure mesh...")
struct_voxels_path = osp.join(voxel_dir, "struct_voxels.ply")
if use_struct_cache and osp.exists(struct_voxels_path):
log.info("Using cached structure voxels.")
else:
pointcloud.voxelize_mesh(
struct_mesh_ply_path,
save_path=struct_voxels_path,
)
log.info("Extracting Structure Mesh PartField feature planes...")
gr.Info("Extracting Structure Mesh PartField feature planes...")
partfield_dir = osp.join(output_dir, 'partfield')
common.ensure_dir(partfield_dir)
existing = [
f for f in os.listdir(partfield_dir)
if f.startswith("part_feat_struct_mesh_zup") and f.endswith("_batch_part_plane.npy")
]
if use_struct_cache and existing:
partfield_save_path = osp.join(partfield_dir, existing[0])
log.info(f"Using cached Structure PartField at {partfield_save_path}")
else:
print("PREDICTING STRUCTURE PART FIELD...")
partfield_save_path = partfield_pipeline_predict(
struct_mesh_zup_path,
partfield_dir,
"struct_mesh_zup"
)
if not out_renderviews:
log.info("Structure rendering failed!")
gr.Warning("Structure rendering failed!")
return {
"struct_mesh": struct_mesh,
"render_out": out_renderviews,
"partfield_structure_predictions_save_path": partfield_save_path,
"voxel_dir": voxel_dir
}
@spaces.GPU(duration=120)
def run_appearance(
self,
structure_mesh: str,
convert_target_yup_to_zup: bool,
convert_appearance_yup_to_zup: bool,
output_dir: str,
appearance_mesh: str,
appearance_image: str,
) -> Optional[str]:
_ = self.preprocess(
structure_mesh=structure_mesh,
convert_yup_to_zup=convert_target_yup_to_zup,
output_dir=output_dir,
)
blender_cache_dir = osp.join(output_dir, "blender_cache")
os.makedirs(blender_cache_dir, exist_ok=True)
os.environ["XDG_CACHE_HOME"] = blender_cache_dir
log.info("Running appearance-guided optimization...")
gr.Info("Running appearance-guided optimization...")
# Load appearance mesh
log.info("Loading appearance mesh...")
gr.Info("Loading appearance mesh...")
if not appearance_mesh.endswith('.glb'):
log.error("Meshes must be in .glb format")
return None
if not osp.exists(appearance_mesh):
log.error(f"Appearance mesh not found: {appearance_mesh}")
return None
# --- HYDRATE FROM CACHE IF EXAMPLE ---
abs_app_mesh = os.path.abspath(appearance_mesh)
if abs_app_mesh in APP_MESH_ABS_TO_NAME:
example_name = APP_MESH_ABS_TO_NAME[abs_app_mesh]
cache_src = os.path.join(PROJECT_ROOT, "all_outputs", example_name)
if os.path.exists(cache_src):
log.info(f"Hydrating appearance data from cache: {example_name}")
# Copy key folders/files if they don't match current input
# We force copy to ensure we have the correct appearance data in this folder
# 1. App Renders
src_renders = os.path.join(cache_src, "app_renders")
dst_renders = os.path.join(output_dir, "app_renders")
if os.path.exists(src_renders):
shutil.copytree(src_renders, dst_renders, dirs_exist_ok=True)
# 2. Voxels (Merge)
src_voxels = os.path.join(cache_src, "voxels")
dst_voxels = os.path.join(output_dir, "voxels")
if os.path.exists(src_voxels):
shutil.copytree(src_voxels, dst_voxels, dirs_exist_ok=True)
# 3. Features
src_features = os.path.join(cache_src, "features")
dst_features = os.path.join(output_dir, "features")
if os.path.exists(src_features):
shutil.copytree(src_features, dst_features, dirs_exist_ok=True)
# 4. Latents
src_latents = os.path.join(cache_src, "latents")
dst_latents = os.path.join(output_dir, "latents")
if os.path.exists(src_latents):
shutil.copytree(src_latents, dst_latents, dirs_exist_ok=True)
# 5. Partfield (App only ideally, but merge is safe due to naming)
src_partfield = os.path.join(cache_src, "partfield")
dst_partfield = os.path.join(output_dir, "partfield")
if os.path.exists(src_partfield):
shutil.copytree(src_partfield, dst_partfield, dirs_exist_ok=True)
# 6. Input Copy (Tricks the hash check below)
src_input = os.path.join(cache_src, "app_mesh_input.glb")
if os.path.exists(src_input):
shutil.copy2(src_input, os.path.join(output_dir, "app_mesh_input.glb"))
# --- STRICT HASH CHECK START (APPEARANCE) ---
current_app_hash = file_sha256(appearance_mesh)
# Similar strategy: verify against a saved copy of the input
cached_app_input_path = osp.join(output_dir, "app_mesh_input.glb")
cached_app_hash = None
if osp.exists(cached_app_input_path):
cached_app_hash = file_sha256(cached_app_input_path)
use_app_cache = (cached_app_hash == current_app_hash)
print(f"Current app hash: {current_app_hash}")
print(f"Cached app input hash: {cached_app_hash}")
print(f"Use app cache: {use_app_cache}")
app_mesh_path = osp.join(output_dir, "app_mesh.glb")
app_mesh_zup_path = osp.join(output_dir, "app_mesh_zup.glb")
if use_app_cache and osp.exists(app_mesh_zup_path):
log.info("Using cached appearance mesh (z-up).")
app_mesh = trimesh.load(app_mesh_zup_path, force="mesh")
else:
# Cache miss: Save input copy and process
shutil.copy2(appearance_mesh, cached_app_input_path)
# Save hash file
with open(osp.join(output_dir, "app_mesh.hash"), "w") as f:
f.write(current_app_hash)
app_mesh = trimesh.load(appearance_mesh, force="mesh")
app_mesh.export(app_mesh_path)
if convert_appearance_yup_to_zup:
app_mesh = pointcloud.convert_mesh_yup_to_zup(app_mesh)
app_mesh.export(app_mesh_zup_path)
# Load appearance image
log.info("Loading appearance image...")
gr.Info("Loading appearance image...")
if appearance_image:
app_image = Image.open(appearance_image).convert('RGB')
app_image.save(osp.join(output_dir, 'app_image.png'))
else:
# If cached, app_image.png should exist
if not osp.exists(osp.join(output_dir, 'app_image.png')):
mesh = vis.from_file(osp.join(output_dir, 'app_mesh.glb'), load_obj_textures=True)
mesh.paint_uniform_color([0.5, 0.5, 0.5])
scene = pycg_render.Scene(up_axis='+Y')
scene.add_object(mesh)
scene.quick_camera(w=512, h=512, pitch_angle=30, plane_angle=-45.0, fov=40)
pycg_render.ThemeDiffuseShadow(None, sun_tilt_right=0.0, sun_tilt_back=0.0, sun_angle=60.0).apply_to(scene)
rendering = scene.render_blender(quality=512)
rendering = image.alpha_compositing(rendering, image.solid(rendering.shape[1], rendering.shape[0]))
image.write(osp.join(output_dir, 'app_image.png'), rendering)
# --- CHECK FOR EXISTING FEATURES TO SKIP RENDERING ---
features_dir = osp.join(output_dir, "features", self.cfg.feature_name)
has_dinov2_features = osp.exists(features_dir) and len(os.listdir(features_dir)) > 0
app_render_dir = osp.join(output_dir, 'app_renders')
common.ensure_dir(app_render_dir)
app_mesh_ply_path = osp.join(app_render_dir, "mesh.ply")
app_transforms_path = osp.join(app_render_dir, "transforms.json")
if has_dinov2_features:
log.info("DinoV2 features found. Skipping appearance rendering.")
gr.Info("DinoV2 features found. Skipping appearance rendering.")
# Ensure mesh.ply exists for voxelization if it wasn't generated by rendering
if not osp.exists(app_mesh_ply_path) and 'app_mesh' in locals():
app_mesh.export(app_mesh_ply_path)
else:
# Render views for DinoV2 feature extraction
log.info(f"Rendering appearance mesh for {self.cfg.num_views} views...")
gr.Info(f"Rendering appearance mesh for {self.cfg.num_views} views...")
if use_app_cache and osp.exists(app_mesh_ply_path) and osp.exists(app_transforms_path):
log.info("Using cached appearance renders.")
out_renderviews = sorted(
[
osp.join(app_render_dir, f)
for f in os.listdir(app_render_dir)
if f.lower().endswith((".png", ".jpg", ".jpeg"))
]
)
else:
out_renderviews = render_all_views(
app_mesh_zup_path,
app_render_dir,
num_views=self.cfg.num_views,
num_workers=None
)
if not out_renderviews:
log.info("Appearance rendering failed!")
gr.Warning("Appearance rendering failed!")
return None
# Voxelise mesh
log.info("Voxelizing appearance mesh...")
gr.Info("Voxelizing appearance mesh...")
app_voxel_dir = osp.join(output_dir, "voxels")
common.ensure_dir(app_voxel_dir)
app_voxels_path = osp.join(app_voxel_dir, "app_voxels.ply")
if use_app_cache and osp.exists(app_voxels_path):
log.info("Using cached appearance voxels.")
else:
pointcloud.voxelize_mesh(
app_mesh_ply_path,
save_path=app_voxels_path,
)
# Extract DinoV2 Features
log.info("Extracting DinoV2 features...")
gr.Info("Extracting DinoV2 features...")
# features_dir already defined above
common.ensure_dir(features_dir)
if has_dinov2_features or (use_app_cache and os.listdir(features_dir)):
log.info("Using cached DINOv2 features.")
else:
log.info("Extracting DinoV2 features...")
gr.Info("Extracting DinoV2 features...")
dinov2_model = torch.hub.load(self.cfg.dinov2_repo, self.cfg.feature_name)
dinov2_model.eval().cuda()
transform = transforms.Compose([transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
generation.extract_feature(output_dir, dinov2_model, transform)
torch.cuda.empty_cache()
del dinov2_model
gc.collect()
# Extract SLAT Latent
log.info("Extracting SLAT latent...")
gr.Info("Extracting SLAT latent...")
latents_dir = osp.join(output_dir, "latents", self.cfg.latent_name)
common.ensure_dir(latents_dir)
if use_app_cache and os.listdir(latents_dir):
log.info("Using cached SLAT latent.")
else:
log.info("Extracting SLAT latent...")
gr.Info("Extracting SLAT latent...")
encoder = models.from_pretrained(self.cfg.enc_pretrained).eval().cuda()
generation.get_latent(output_dir, self.cfg.feature_name, self.cfg.latent_name, encoder)
del encoder
gc.collect()
# Extract PartField features for appearance mesh
log.info("Extracting Appearance Mesh PartField feature planes...")
gr.Info("Extracting Appearance Mesh PartField feature planes...")
app_partfield_dir = osp.join(output_dir, "partfield")
common.ensure_dir(app_partfield_dir)
existing_app_pf = [
f for f in os.listdir(app_partfield_dir)
if f.startswith("part_feat_app_mesh_zup") and f.endswith("_batch_part_plane.npy")
]
if use_app_cache and existing_app_pf:
appearance_partfield_save_path = osp.join(
app_partfield_dir, existing_app_pf[0]
)
log.info(
f"Using cached Appearance PartField at {appearance_partfield_save_path}"
)
else:
appearance_partfield_save_path = partfield_pipeline_predict(
app_mesh_zup_path,
app_partfield_dir,
"app_mesh_zup"
)
# Appearance Optimization
appearance.optimize_appearance(self.cfg, output_dir)
# Return the output mesh path
output_mesh_path = osp.join(output_dir, 'out_app.glb')
output_video_path = osp.join(output_dir, 'out_gaussian_app.mp4')
if not osp.exists(output_mesh_path) or not osp.exists(output_video_path):
log.error(f"Output mesh or video not found at {output_mesh_path} or {output_video_path}")
return None, None
return output_mesh_path, output_video_path
@spaces.GPU(duration=120)
def run_self_similarity(
self,
structure_mesh: str,
convert_target_yup_to_zup: bool,
output_dir: str,
app_type: str,
appearance_text: Optional[str] = None,
appearance_image: Optional[str] = None,
) -> Optional[str]:
_ = self.preprocess(
structure_mesh=structure_mesh,
convert_yup_to_zup=convert_target_yup_to_zup,
output_dir=output_dir,
)
log.info("Running similarity-guided optimization...")
gr.Info("Running similarity-guided optimization...")
if app_type == 'image' and appearance_image:
img = Image.open(appearance_image).convert('RGB')
img.save(osp.join(output_dir, 'app_image.png'))
app = appearance_text if app_type == 'text' else appearance_image
# Self-Similarity Optimization
self_similarity.optimize_self_similarity(self.cfg, app, app_type, output_dir)
# Return the output mesh path
output_mesh_path = osp.join(output_dir, 'out_sim.glb')
output_video_path = osp.join(output_dir, 'out_gaussian_sim.mp4')
if not osp.exists(output_mesh_path) or not osp.exists(output_video_path):
log.error(f"Output mesh or video not found at {output_mesh_path} or {output_video_path}")
return None, None
return output_mesh_path, output_video_path
def main():
pass
|