File size: 23,193 Bytes
1ac2018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c816548
 
1ac2018
 
 
 
 
 
 
 
 
fbb5505
 
 
 
1ac2018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
import os
import os.path as osp
import gradio as gr
import spaces
import gc
import trimesh
from PIL import Image
import logging as log
from omegaconf import OmegaConf
import random
import numpy as np
import hashlib
import shutil
from typing import Optional

import torch
from torchvision import transforms
from pycg import vis, image
from pycg import render as pycg_render

import sys
sys.path.append('.')

from lib.util.render import BLENDER_PATH
from third_party.PartField.partfield.model_trainer_pvcnn_only_demo import Model
from lib.opt import appearance, self_similarity
from lib.util import generation, common, pointcloud
import third_party.TRELLIS.trellis.models as models
from demos.custom_utils import render_all_views

# Define project root
PROJECT_ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))

# Example Data Mappings (Manual Sync with Generator/Demo)
APP_MESH_EXAMPLES = {
    "B01DA8LC0A": "example_data/appearance_mesh/B01DA8LC0A.glb",
    "B01DJH73Y6": "example_data/appearance_mesh/B01DJH73Y6.glb",
    "B0728KSP33": "example_data/appearance_mesh/B0728KSP33.glb",
    "B07B4YXNR8": "example_data/appearance_mesh/B07B4YXNR8.glb",
    "B07QC84LP1": "example_data/appearance_mesh/B07QC84LP1.glb",
    "B07QFRSC8M": "example_data/appearance_mesh/B07QFRSC8M_zup.glb",
    "B082QC7YKR": "example_data/appearance_mesh/B082QC7YKR_zup.glb",
}
APP_MESH_ABS_TO_NAME = {
    os.path.abspath(os.path.join(PROJECT_ROOT, v)): k 
    for k, v in APP_MESH_EXAMPLES.items()
}

# Set BLENDER_HOME for pycg if not set
if "BLENDER_HOME" not in os.environ:
    if osp.exists(BLENDER_PATH):
        os.environ["BLENDER_HOME"] = BLENDER_PATH
    else:
        os.environ["BLENDER_HOME"] = "blender"

log.getLogger().setLevel(log.INFO)
log.basicConfig(level=log.INFO,
                format='%(asctime)s - %(levelname)s - %(message)s',
                datefmt='%Y-%m-%d %H:%M:%S')

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
partfield_config = 'third_party/PartField/config.yaml'
partfield_cfg = OmegaConf.load(partfield_config)

# Helper to calc hash
def file_sha256(path: str, chunk_size: int = 1 << 20) -> str:
    h = hashlib.sha256()
    if not osp.exists(path): return "nocontent"
    with open(path, "rb") as f:
        for chunk in iter(lambda: f.read(chunk_size), b""):
            h.update(chunk)
    return h.hexdigest()

# @spaces.GPU()
def init_partfield(obj_path):
    torch.manual_seed(0)
    random.seed(0)
    np.random.seed(0)

    partfield_model = Model(partfield_cfg, obj_path)
    partfield_model = partfield_model.to(device)

    ckpt = torch.load(partfield_cfg.continue_ckpt, map_location=device, weights_only=False)

    state_dict = ckpt.get("state_dict", ckpt)
    state_dict = {k.replace("model.", ""): v for k, v in state_dict.items()}
    missing, unexpected = partfield_model.load_state_dict(state_dict, strict=False)

    if missing:
        print("[load_partfield_model] Missing keys:", missing)
    if unexpected:
        print("[load_partfield_model] Unexpected keys:", unexpected)

    partfield_model.eval()
    return partfield_model

@spaces.GPU
def partfield_pipeline_predict(obj_path, output_dir, uid_tag):
    
    log.info(f"Extracting PartField feature planes for {uid_tag}...")
    gr.Info(f"Extracting PartField feature planes for {uid_tag}...")

    seed = int(partfield_cfg.seed)
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)

    partfield_model = init_partfield(obj_path)
    dataloader = partfield_model.predict_dataloader()
    batch = next(iter(dataloader))

    with torch.no_grad():
        with torch.autocast(device_type="cuda", dtype=torch.float16):
            batch = {
                k: (v.to(device) if torch.is_tensor(v) else v)
                for k, v in batch.items()
            }
            part_planes, _ = partfield_model.predict_step(batch, batch_idx=0)

    os.makedirs(output_dir, exist_ok=True)
    # Use the explicit uid_tag instead of the one from the model
    partfield_save_path = f'{output_dir}/part_feat_{uid_tag}_batch_part_plane.npy'
    print(f"SAVING PART FIELD TO: {partfield_save_path}")
    np.save(partfield_save_path, part_planes)

    del partfield_model
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    gc.collect()

    return partfield_save_path

class GuideFlow3dPipeline:
    def __init__(self):
        self.cfg = None

    def from_pretrained(self, config):
        self.cfg = config
        return self

    @spaces.GPU
    def preprocess(
        self,
        structure_mesh: str,
        convert_yup_to_zup: bool,
        output_dir: str,
    ) -> None:
        log.info("Loading structure mesh...")
        gr.Info("Loading structure mesh...")
        if not structure_mesh.endswith('.glb'):
            log.error("Meshes must be in .glb format")
            return
        
        current_struct_hash = file_sha256(structure_mesh)
        cached_input_copy_path = osp.join(output_dir, "struct_mesh_input.glb")
        
        cached_struct_hash = None
        if osp.exists(cached_input_copy_path):
            cached_struct_hash = file_sha256(cached_input_copy_path)
            
        use_struct_cache = (cached_struct_hash == current_struct_hash)

        print(
            f"Use struct cache: {use_struct_cache}",
            f"Current struct hash: {current_struct_hash}",
            f"Cached input copy hash: {cached_struct_hash}",
            f"Input Structure mesh: {structure_mesh}",
            f"Checking Structure hash path at: {cached_input_copy_path}"
        )
        
        struct_mesh_zup_path = osp.join(output_dir, "struct_mesh_zup.glb")

        if use_struct_cache and osp.exists(struct_mesh_zup_path):
            log.info("Using cached structure mesh (z-up).")
            struct_mesh = trimesh.load(struct_mesh_zup_path, force="mesh")
        else:
            # Cache miss or mismatch: Regenerate
            log.info("Cache miss or mismatch. Regenerating structure mesh...")
            
            # 1. Save the exact input copy for future hash checks
            shutil.copy2(structure_mesh, cached_input_copy_path)
            
            # Save hash file for folder scanning
            with open(osp.join(output_dir, "struct_mesh.hash"), "w") as f:
                f.write(current_struct_hash)

            # 2. Process
            struct_mesh = trimesh.load(structure_mesh, force='mesh')
            
            if convert_yup_to_zup:
                struct_mesh = pointcloud.convert_mesh_yup_to_zup(struct_mesh)
            struct_mesh.export(struct_mesh_zup_path)

        log.info(f"Rendering structure mesh for {self.cfg.num_views // 10} views...")
        gr.Info(f"Rendering structure mesh for {self.cfg.num_views // 10} views...")

        struct_render_dir = osp.join(output_dir, 'struct_renders')
        common.ensure_dir(struct_render_dir)

        struct_mesh_ply_path = osp.join(struct_render_dir, "mesh.ply")
        struct_transforms_path = osp.join(struct_render_dir, "transforms.json")

        if use_struct_cache and osp.exists(struct_mesh_ply_path) and osp.exists(struct_transforms_path):
            log.info("Using cached structure renders.")
            out_renderviews = sorted(
                [
                    osp.join(struct_render_dir, f)
                    for f in os.listdir(struct_render_dir)
                    if f.lower().endswith((".png", ".jpg", ".jpeg"))
                ]
            )
        else:
            out_renderviews = render_all_views(
                struct_mesh_zup_path,
                struct_render_dir,
                num_views=self.cfg.num_views // 10,
                num_workers=None 
            )

        if not out_renderviews:
            log.error("Structure rendering failed! Aborting pipeline.")
            return None

        voxel_dir = osp.join(output_dir, 'voxels')
        common.ensure_dir(voxel_dir)
        log.info("Voxelizing structure mesh...")
        gr.Info("Voxelizing structure mesh...")

        struct_voxels_path = osp.join(voxel_dir, "struct_voxels.ply")

        if use_struct_cache and osp.exists(struct_voxels_path):
            log.info("Using cached structure voxels.")
        else:
            pointcloud.voxelize_mesh(
                struct_mesh_ply_path,
                save_path=struct_voxels_path,
            )

        log.info("Extracting Structure Mesh PartField feature planes...")
        gr.Info("Extracting Structure Mesh PartField feature planes...")

        partfield_dir = osp.join(output_dir, 'partfield')
        common.ensure_dir(partfield_dir)

        existing = [
            f for f in os.listdir(partfield_dir)
            if f.startswith("part_feat_struct_mesh_zup") and f.endswith("_batch_part_plane.npy")
        ]
        if use_struct_cache and existing:
            partfield_save_path = osp.join(partfield_dir, existing[0])
            log.info(f"Using cached Structure PartField at {partfield_save_path}")
        else:
            print("PREDICTING STRUCTURE PART FIELD...")
            partfield_save_path = partfield_pipeline_predict(
                struct_mesh_zup_path,
                partfield_dir,
                "struct_mesh_zup"
            )

        if not out_renderviews:
            log.info("Structure rendering failed!")
            gr.Warning("Structure rendering failed!")
        return {
            "struct_mesh": struct_mesh,
            "render_out": out_renderviews,
            "partfield_structure_predictions_save_path": partfield_save_path,
            "voxel_dir": voxel_dir
        }

    @spaces.GPU(duration=120)
    def run_appearance(
        self,
        structure_mesh: str,
        convert_target_yup_to_zup: bool,
        convert_appearance_yup_to_zup: bool,
        output_dir: str,
        appearance_mesh: str,
        appearance_image: str,
    ) -> Optional[str]:
        _ = self.preprocess(
            structure_mesh=structure_mesh,
            convert_yup_to_zup=convert_target_yup_to_zup,
            output_dir=output_dir,
        )

        blender_cache_dir = osp.join(output_dir, "blender_cache")
        os.makedirs(blender_cache_dir, exist_ok=True)
        os.environ["XDG_CACHE_HOME"] = blender_cache_dir

        log.info("Running appearance-guided optimization...")
        gr.Info("Running appearance-guided optimization...")

        # Load appearance mesh
        log.info("Loading appearance mesh...")
        gr.Info("Loading appearance mesh...")

        if not appearance_mesh.endswith('.glb'):
            log.error("Meshes must be in .glb format")
            return None
        
        if not osp.exists(appearance_mesh):
            log.error(f"Appearance mesh not found: {appearance_mesh}")
            return None

        # --- HYDRATE FROM CACHE IF EXAMPLE ---
        abs_app_mesh = os.path.abspath(appearance_mesh)
        if abs_app_mesh in APP_MESH_ABS_TO_NAME:
            example_name = APP_MESH_ABS_TO_NAME[abs_app_mesh]
            cache_src = os.path.join(PROJECT_ROOT, "all_outputs", example_name)
            if os.path.exists(cache_src):
                log.info(f"Hydrating appearance data from cache: {example_name}")
                # Copy key folders/files if they don't match current input
                # We force copy to ensure we have the correct appearance data in this folder
                
                # 1. App Renders
                src_renders = os.path.join(cache_src, "app_renders")
                dst_renders = os.path.join(output_dir, "app_renders")
                if os.path.exists(src_renders):
                    shutil.copytree(src_renders, dst_renders, dirs_exist_ok=True)
                
                # 2. Voxels (Merge)
                src_voxels = os.path.join(cache_src, "voxels")
                dst_voxels = os.path.join(output_dir, "voxels")
                if os.path.exists(src_voxels):
                    shutil.copytree(src_voxels, dst_voxels, dirs_exist_ok=True)

                # 3. Features
                src_features = os.path.join(cache_src, "features")
                dst_features = os.path.join(output_dir, "features")
                if os.path.exists(src_features):
                    shutil.copytree(src_features, dst_features, dirs_exist_ok=True)

                # 4. Latents
                src_latents = os.path.join(cache_src, "latents")
                dst_latents = os.path.join(output_dir, "latents")
                if os.path.exists(src_latents):
                    shutil.copytree(src_latents, dst_latents, dirs_exist_ok=True)

                # 5. Partfield (App only ideally, but merge is safe due to naming)
                src_partfield = os.path.join(cache_src, "partfield")
                dst_partfield = os.path.join(output_dir, "partfield")
                if os.path.exists(src_partfield):
                    shutil.copytree(src_partfield, dst_partfield, dirs_exist_ok=True)
                
                # 6. Input Copy (Tricks the hash check below)
                src_input = os.path.join(cache_src, "app_mesh_input.glb")
                if os.path.exists(src_input):
                    shutil.copy2(src_input, os.path.join(output_dir, "app_mesh_input.glb"))

        # --- STRICT HASH CHECK START (APPEARANCE) ---
        current_app_hash = file_sha256(appearance_mesh)
        
        # Similar strategy: verify against a saved copy of the input
        cached_app_input_path = osp.join(output_dir, "app_mesh_input.glb")
        
        cached_app_hash = None
        if osp.exists(cached_app_input_path):
             cached_app_hash = file_sha256(cached_app_input_path)

        use_app_cache = (cached_app_hash == current_app_hash)
        
        print(f"Current app hash: {current_app_hash}")
        print(f"Cached app input hash: {cached_app_hash}")
        print(f"Use app cache: {use_app_cache}")

        app_mesh_path = osp.join(output_dir, "app_mesh.glb")
        app_mesh_zup_path = osp.join(output_dir, "app_mesh_zup.glb")

        if use_app_cache and osp.exists(app_mesh_zup_path):
            log.info("Using cached appearance mesh (z-up).")
            app_mesh = trimesh.load(app_mesh_zup_path, force="mesh")
        else:
            # Cache miss: Save input copy and process
            shutil.copy2(appearance_mesh, cached_app_input_path)
            
            # Save hash file
            with open(osp.join(output_dir, "app_mesh.hash"), "w") as f:
                f.write(current_app_hash)

            app_mesh = trimesh.load(appearance_mesh, force="mesh")
            app_mesh.export(app_mesh_path)

            if convert_appearance_yup_to_zup:
                app_mesh = pointcloud.convert_mesh_yup_to_zup(app_mesh)
            app_mesh.export(app_mesh_zup_path)

        # Load appearance image
        log.info("Loading appearance image...")
        gr.Info("Loading appearance image...")
        
        if appearance_image:
            app_image = Image.open(appearance_image).convert('RGB')
            app_image.save(osp.join(output_dir, 'app_image.png'))
        else:
            # If cached, app_image.png should exist
            if not osp.exists(osp.join(output_dir, 'app_image.png')):
                mesh = vis.from_file(osp.join(output_dir, 'app_mesh.glb'), load_obj_textures=True)
                mesh.paint_uniform_color([0.5, 0.5, 0.5])
                scene = pycg_render.Scene(up_axis='+Y')
                scene.add_object(mesh)
                scene.quick_camera(w=512, h=512, pitch_angle=30, plane_angle=-45.0, fov=40)
                pycg_render.ThemeDiffuseShadow(None, sun_tilt_right=0.0, sun_tilt_back=0.0, sun_angle=60.0).apply_to(scene)
                rendering = scene.render_blender(quality=512)
                rendering = image.alpha_compositing(rendering, image.solid(rendering.shape[1], rendering.shape[0]))
                image.write(osp.join(output_dir, 'app_image.png'), rendering)

        # --- CHECK FOR EXISTING FEATURES TO SKIP RENDERING ---
        features_dir = osp.join(output_dir, "features", self.cfg.feature_name)
        has_dinov2_features = osp.exists(features_dir) and len(os.listdir(features_dir)) > 0

        app_render_dir = osp.join(output_dir, 'app_renders')
        common.ensure_dir(app_render_dir)
        app_mesh_ply_path = osp.join(app_render_dir, "mesh.ply")
        app_transforms_path = osp.join(app_render_dir, "transforms.json")

        if has_dinov2_features:
            log.info("DinoV2 features found. Skipping appearance rendering.")
            gr.Info("DinoV2 features found. Skipping appearance rendering.")
            # Ensure mesh.ply exists for voxelization if it wasn't generated by rendering
            if not osp.exists(app_mesh_ply_path) and 'app_mesh' in locals():
                app_mesh.export(app_mesh_ply_path)
        else:
            # Render views for DinoV2 feature extraction
            log.info(f"Rendering appearance mesh for {self.cfg.num_views} views...")
            gr.Info(f"Rendering appearance mesh for {self.cfg.num_views} views...")

            if use_app_cache and osp.exists(app_mesh_ply_path) and osp.exists(app_transforms_path):
                log.info("Using cached appearance renders.")
                out_renderviews = sorted(
                    [
                        osp.join(app_render_dir, f)
                        for f in os.listdir(app_render_dir)
                        if f.lower().endswith((".png", ".jpg", ".jpeg"))
                    ]
                )
            else:
                out_renderviews = render_all_views(
                    app_mesh_zup_path,
                    app_render_dir,
                    num_views=self.cfg.num_views,
                    num_workers=None
                )

            if not out_renderviews:
                log.info("Appearance rendering failed!")
                gr.Warning("Appearance rendering failed!")
                return None

        # Voxelise mesh
        log.info("Voxelizing appearance mesh...")
        gr.Info("Voxelizing appearance mesh...")

        app_voxel_dir = osp.join(output_dir, "voxels")
        common.ensure_dir(app_voxel_dir)
        app_voxels_path = osp.join(app_voxel_dir, "app_voxels.ply")

        if use_app_cache and osp.exists(app_voxels_path):
            log.info("Using cached appearance voxels.")
        else:
            pointcloud.voxelize_mesh(
                app_mesh_ply_path,
                save_path=app_voxels_path,
            )

        # Extract DinoV2 Features
        log.info("Extracting DinoV2 features...")
        gr.Info("Extracting DinoV2 features...")

        # features_dir already defined above
        common.ensure_dir(features_dir)

        if has_dinov2_features or (use_app_cache and os.listdir(features_dir)):
            log.info("Using cached DINOv2 features.")
        else:
            log.info("Extracting DinoV2 features...")
            gr.Info("Extracting DinoV2 features...")
            
            dinov2_model = torch.hub.load(self.cfg.dinov2_repo, self.cfg.feature_name)
            dinov2_model.eval().cuda()
            transform = transforms.Compose([transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])

            generation.extract_feature(output_dir, dinov2_model, transform)
            torch.cuda.empty_cache()

            del dinov2_model
            gc.collect()

        # Extract SLAT Latent
        log.info("Extracting SLAT latent...")
        gr.Info("Extracting SLAT latent...")

        latents_dir = osp.join(output_dir, "latents", self.cfg.latent_name)
        common.ensure_dir(latents_dir)

        if use_app_cache and os.listdir(latents_dir):
            log.info("Using cached SLAT latent.")
        else:
            log.info("Extracting SLAT latent...")
            gr.Info("Extracting SLAT latent...")
            
            encoder = models.from_pretrained(self.cfg.enc_pretrained).eval().cuda()

            generation.get_latent(output_dir, self.cfg.feature_name, self.cfg.latent_name, encoder)

            del encoder
            gc.collect()
        
        # Extract PartField features for appearance mesh
        log.info("Extracting Appearance Mesh PartField feature planes...")
        gr.Info("Extracting Appearance Mesh PartField feature planes...")
        
        app_partfield_dir = osp.join(output_dir, "partfield")
        common.ensure_dir(app_partfield_dir)

        existing_app_pf = [
            f for f in os.listdir(app_partfield_dir)
            if f.startswith("part_feat_app_mesh_zup") and f.endswith("_batch_part_plane.npy")
        ]
        if use_app_cache and existing_app_pf:
            appearance_partfield_save_path = osp.join(
                app_partfield_dir, existing_app_pf[0]
            )
            log.info(
                f"Using cached Appearance PartField at {appearance_partfield_save_path}"
            )
        else:
            appearance_partfield_save_path = partfield_pipeline_predict(
                app_mesh_zup_path,
                app_partfield_dir,
                "app_mesh_zup"
            )
    
        # Appearance Optimization
        appearance.optimize_appearance(self.cfg, output_dir)
        
        # Return the output mesh path
        output_mesh_path = osp.join(output_dir, 'out_app.glb')
        output_video_path = osp.join(output_dir, 'out_gaussian_app.mp4')
        if not osp.exists(output_mesh_path) or not osp.exists(output_video_path):
            log.error(f"Output mesh or video not found at {output_mesh_path} or {output_video_path}")
            return None, None
        return output_mesh_path, output_video_path

    @spaces.GPU(duration=120)
    def run_self_similarity(
        self,
        structure_mesh: str,
        convert_target_yup_to_zup: bool,
        output_dir: str,
        app_type: str,
        appearance_text: Optional[str] = None,
        appearance_image: Optional[str] = None,
    ) -> Optional[str]:
        _ = self.preprocess(
            structure_mesh=structure_mesh,
            convert_yup_to_zup=convert_target_yup_to_zup,
            output_dir=output_dir,
        )
        log.info("Running similarity-guided optimization...")
        gr.Info("Running similarity-guided optimization...")

        if app_type == 'image' and appearance_image:
            img = Image.open(appearance_image).convert('RGB')
            img.save(osp.join(output_dir, 'app_image.png'))

        app = appearance_text if app_type == 'text' else appearance_image
        
        # Self-Similarity Optimization
        self_similarity.optimize_self_similarity(self.cfg, app, app_type, output_dir)
        
        # Return the output mesh path
        output_mesh_path = osp.join(output_dir, 'out_sim.glb')
        output_video_path = osp.join(output_dir, 'out_gaussian_sim.mp4')
        if not osp.exists(output_mesh_path) or not osp.exists(output_video_path):
            log.error(f"Output mesh or video not found at {output_mesh_path} or {output_video_path}")
            return None, None
        return output_mesh_path, output_video_path

def main():
    pass