Spaces:
Paused
Paused
| import torch | |
| import lightning.pytorch as pl | |
| import torch.nn as nn | |
| import os | |
| import trimesh | |
| import numpy as np | |
| from torch.utils.data import DataLoader | |
| from third_party.PartField.partfield.model.PVCNN.encoder_pc import TriPlanePC2Encoder, sample_triplane_feat | |
| from third_party.PartField.partfield.model.triplane import TriplaneTransformer, get_grid_coord #, sample_from_planes, Voxel2Triplane | |
| from third_party.PartField.partfield.model.model_utils import VanillaMLP | |
| from third_party.PartField.partfield.dataloader import Demo_Dataset | |
| class Model(pl.LightningModule): | |
| def __init__(self, cfg, obj_path): | |
| super().__init__() | |
| self.obj_path = obj_path | |
| self.save_hyperparameters() | |
| self.cfg = cfg | |
| self.automatic_optimization = False | |
| self.triplane_resolution = cfg.triplane_resolution | |
| self.triplane_channels_low = cfg.triplane_channels_low | |
| self.triplane_transformer = TriplaneTransformer( | |
| input_dim=cfg.triplane_channels_low * 2, | |
| transformer_dim=1024, | |
| transformer_layers=6, | |
| transformer_heads=8, | |
| triplane_low_res=32, | |
| triplane_high_res=128, | |
| triplane_dim=cfg.triplane_channels_high, | |
| ) | |
| self.sdf_decoder = VanillaMLP(input_dim=64, | |
| output_dim=1, | |
| out_activation="tanh", | |
| n_neurons=64, #64 | |
| n_hidden_layers=6) #6 | |
| self.use_pvcnn = cfg.use_pvcnnonly | |
| self.use_2d_feat = cfg.use_2d_feat | |
| if self.use_pvcnn: | |
| self.pvcnn = TriPlanePC2Encoder( | |
| cfg.pvcnn, | |
| device="cuda", | |
| shape_min=-1, | |
| shape_length=2, | |
| use_2d_feat=self.use_2d_feat) #.cuda() | |
| self.logit_scale = nn.Parameter(torch.tensor([1.0], requires_grad=True)) | |
| self.grid_coord = get_grid_coord(256) | |
| self.mse_loss = torch.nn.MSELoss() | |
| self.l1_loss = torch.nn.L1Loss(reduction='none') | |
| if cfg.regress_2d_feat: | |
| self.feat_decoder = VanillaMLP(input_dim=64, | |
| output_dim=192, | |
| out_activation="GELU", | |
| n_neurons=64, #64 | |
| n_hidden_layers=6) #6 | |
| def predict_dataloader(self): | |
| dataset = Demo_Dataset(self.obj_path) | |
| dataloader = DataLoader(dataset, | |
| num_workers=self.cfg.dataset.val_num_workers, | |
| batch_size=self.cfg.dataset.val_batch_size, | |
| shuffle=False, | |
| pin_memory=True, | |
| drop_last=False) | |
| return dataloader | |
| def predict_step(self, batch, batch_idx): | |
| N = batch['pc'].shape[0] | |
| assert N == 1 | |
| pc_feat = self.pvcnn(batch['pc'], batch['pc']) | |
| planes = pc_feat | |
| planes = self.triplane_transformer(planes) | |
| sdf_planes, part_planes = torch.split(planes, [64, planes.shape[2] - 64], dim=2) | |
| def sample_points(vertices, faces, n_point_per_face): | |
| # Generate random barycentric coordinates | |
| # borrowed from Kaolin https://github.com/NVIDIAGameWorks/kaolin/blob/master/kaolin/ops/mesh/trianglemesh.py#L43 | |
| n_f = faces.shape[0] | |
| u = torch.sqrt(torch.rand((n_f, n_point_per_face, 1), | |
| device=vertices.device, | |
| dtype=vertices.dtype)) | |
| v = torch.rand((n_f, n_point_per_face, 1), | |
| device=vertices.device, | |
| dtype=vertices.dtype) | |
| w0 = 1 - u | |
| w1 = u * (1 - v) | |
| w2 = u * v | |
| face_v_0 = torch.index_select(vertices, 0, faces[:, 0].reshape(-1)) | |
| face_v_1 = torch.index_select(vertices, 0, faces[:, 1].reshape(-1)) | |
| face_v_2 = torch.index_select(vertices, 0, faces[:, 2].reshape(-1)) | |
| points = w0 * face_v_0.unsqueeze(dim=1) + w1 * face_v_1.unsqueeze(dim=1) + w2 * face_v_2.unsqueeze(dim=1) | |
| return points | |
| def sample_and_mean_memory_save_version(part_planes, tensor_vertices, n_point_per_face): | |
| n_sample_each = self.cfg.n_sample_each # we iterate over this to avoid OOM | |
| n_v = tensor_vertices.shape[1] | |
| n_sample = n_v // n_sample_each + 1 | |
| all_sample = [] | |
| for i_sample in range(n_sample): | |
| sampled_feature = sample_triplane_feat(part_planes, tensor_vertices[:, i_sample * n_sample_each: i_sample * n_sample_each + n_sample_each,]) | |
| assert sampled_feature.shape[1] % n_point_per_face == 0 | |
| sampled_feature = sampled_feature.reshape(1, -1, n_point_per_face, sampled_feature.shape[-1]) | |
| sampled_feature = torch.mean(sampled_feature, axis=-2) | |
| all_sample.append(sampled_feature) | |
| return torch.cat(all_sample, dim=1) | |
| part_planes = part_planes.cpu().numpy() | |
| return part_planes, batch['uid'][0] |