GuideFlow3D / third_party /PartField /partfield /model_trainer_pvcnn_only_demo.py
suvadityamuk's picture
feat: initial commit
1ac2018
import torch
import lightning.pytorch as pl
import torch.nn as nn
import os
import trimesh
import numpy as np
from torch.utils.data import DataLoader
from third_party.PartField.partfield.model.PVCNN.encoder_pc import TriPlanePC2Encoder, sample_triplane_feat
from third_party.PartField.partfield.model.triplane import TriplaneTransformer, get_grid_coord #, sample_from_planes, Voxel2Triplane
from third_party.PartField.partfield.model.model_utils import VanillaMLP
from third_party.PartField.partfield.dataloader import Demo_Dataset
class Model(pl.LightningModule):
def __init__(self, cfg, obj_path):
super().__init__()
self.obj_path = obj_path
self.save_hyperparameters()
self.cfg = cfg
self.automatic_optimization = False
self.triplane_resolution = cfg.triplane_resolution
self.triplane_channels_low = cfg.triplane_channels_low
self.triplane_transformer = TriplaneTransformer(
input_dim=cfg.triplane_channels_low * 2,
transformer_dim=1024,
transformer_layers=6,
transformer_heads=8,
triplane_low_res=32,
triplane_high_res=128,
triplane_dim=cfg.triplane_channels_high,
)
self.sdf_decoder = VanillaMLP(input_dim=64,
output_dim=1,
out_activation="tanh",
n_neurons=64, #64
n_hidden_layers=6) #6
self.use_pvcnn = cfg.use_pvcnnonly
self.use_2d_feat = cfg.use_2d_feat
if self.use_pvcnn:
self.pvcnn = TriPlanePC2Encoder(
cfg.pvcnn,
device="cuda",
shape_min=-1,
shape_length=2,
use_2d_feat=self.use_2d_feat) #.cuda()
self.logit_scale = nn.Parameter(torch.tensor([1.0], requires_grad=True))
self.grid_coord = get_grid_coord(256)
self.mse_loss = torch.nn.MSELoss()
self.l1_loss = torch.nn.L1Loss(reduction='none')
if cfg.regress_2d_feat:
self.feat_decoder = VanillaMLP(input_dim=64,
output_dim=192,
out_activation="GELU",
n_neurons=64, #64
n_hidden_layers=6) #6
def predict_dataloader(self):
dataset = Demo_Dataset(self.obj_path)
dataloader = DataLoader(dataset,
num_workers=self.cfg.dataset.val_num_workers,
batch_size=self.cfg.dataset.val_batch_size,
shuffle=False,
pin_memory=True,
drop_last=False)
return dataloader
@torch.no_grad()
def predict_step(self, batch, batch_idx):
N = batch['pc'].shape[0]
assert N == 1
pc_feat = self.pvcnn(batch['pc'], batch['pc'])
planes = pc_feat
planes = self.triplane_transformer(planes)
sdf_planes, part_planes = torch.split(planes, [64, planes.shape[2] - 64], dim=2)
def sample_points(vertices, faces, n_point_per_face):
# Generate random barycentric coordinates
# borrowed from Kaolin https://github.com/NVIDIAGameWorks/kaolin/blob/master/kaolin/ops/mesh/trianglemesh.py#L43
n_f = faces.shape[0]
u = torch.sqrt(torch.rand((n_f, n_point_per_face, 1),
device=vertices.device,
dtype=vertices.dtype))
v = torch.rand((n_f, n_point_per_face, 1),
device=vertices.device,
dtype=vertices.dtype)
w0 = 1 - u
w1 = u * (1 - v)
w2 = u * v
face_v_0 = torch.index_select(vertices, 0, faces[:, 0].reshape(-1))
face_v_1 = torch.index_select(vertices, 0, faces[:, 1].reshape(-1))
face_v_2 = torch.index_select(vertices, 0, faces[:, 2].reshape(-1))
points = w0 * face_v_0.unsqueeze(dim=1) + w1 * face_v_1.unsqueeze(dim=1) + w2 * face_v_2.unsqueeze(dim=1)
return points
def sample_and_mean_memory_save_version(part_planes, tensor_vertices, n_point_per_face):
n_sample_each = self.cfg.n_sample_each # we iterate over this to avoid OOM
n_v = tensor_vertices.shape[1]
n_sample = n_v // n_sample_each + 1
all_sample = []
for i_sample in range(n_sample):
sampled_feature = sample_triplane_feat(part_planes, tensor_vertices[:, i_sample * n_sample_each: i_sample * n_sample_each + n_sample_each,])
assert sampled_feature.shape[1] % n_point_per_face == 0
sampled_feature = sampled_feature.reshape(1, -1, n_point_per_face, sampled_feature.shape[-1])
sampled_feature = torch.mean(sampled_feature, axis=-2)
all_sample.append(sampled_feature)
return torch.cat(all_sample, dim=1)
part_planes = part_planes.cpu().numpy()
return part_planes, batch['uid'][0]