Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
# app.py (
|
| 2 |
import gradio as gr
|
| 3 |
import tensorflow as tf
|
| 4 |
import pickle
|
|
@@ -22,24 +22,27 @@ except Exception as e:
|
|
| 22 |
print(f"FATAL ERROR loading files: {e}")
|
| 23 |
successor_model, predecessor_model = None, None
|
| 24 |
|
| 25 |
-
# --- 2. THE CORE PREDICTION LOGIC
|
| 26 |
-
# This function now
|
| 27 |
-
def predict_next_state(model, tokenizers,
|
| 28 |
-
if not model or not tokenizers:
|
| 29 |
-
return "
|
| 30 |
|
| 31 |
-
# Prepare input data
|
| 32 |
-
input_data = {
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
processed_input = {}
|
| 34 |
for col, text_list in input_data.items():
|
| 35 |
sequences = tokenizers[col].texts_to_sequences(text_list)
|
| 36 |
padded_sequences = tf.keras.preprocessing.sequence.pad_sequences(sequences, maxlen=MAX_SEQ_LENGTH, padding='post')
|
| 37 |
processed_input[col] = padded_sequences
|
| 38 |
|
| 39 |
-
# Get AI prediction
|
| 40 |
predictions = model.predict(processed_input)
|
| 41 |
|
| 42 |
-
# Decode prediction
|
| 43 |
target_texts = {}
|
| 44 |
output_cols = ['target_unit_name', 'target_analogy', 'target_commentary']
|
| 45 |
for i, col in enumerate(output_cols):
|
|
@@ -48,52 +51,72 @@ def predict_next_state(model, tokenizers, current_unit, current_analogy, current
|
|
| 48 |
clean_text = ' '.join([word for word in predicted_sequence.split() if word not in ['<oov>', 'end']])
|
| 49 |
target_texts[col] = clean_text.strip()
|
| 50 |
|
| 51 |
-
# *** DEBUGGING PRINT ***
|
| 52 |
-
print(f"--- PREDICTION DECODED ---")
|
| 53 |
print(f"Decoded Unit Name: {target_texts['target_unit_name']}")
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
# Handle "Infinity" Sentinel
|
| 58 |
-
if "end of knowledge" in
|
| 59 |
direction = "larger" if model == successor_model else "smaller"
|
| 60 |
prefix = "Giga-" if direction == "larger" else "pico-"
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
|
| 68 |
-
# --- WRAPPER FUNCTIONS
|
| 69 |
-
#
|
| 70 |
-
def go_larger(
|
| 71 |
print("\n>>> 'Go Larger' button clicked. Using SUCCESSOR model.")
|
| 72 |
-
return predict_next_state(successor_model, successor_tokenizers,
|
| 73 |
|
| 74 |
-
def go_smaller(
|
| 75 |
print("\n>>> 'Go Smaller' button clicked. Using PREDECESSOR model.")
|
| 76 |
-
return predict_next_state(predecessor_model, predecessor_tokenizers,
|
| 77 |
|
| 78 |
-
# --- 3. THE GRADIO USER INTERFACE (
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
| 82 |
|
| 83 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="sky")) as demo:
|
| 84 |
gr.Markdown("# 🤖 Digital Scale Explorer AI")
|
| 85 |
-
# ... (the rest of the UI code is identical) ...
|
| 86 |
gr.Markdown("An AI trained from scratch to explore the infinite ladder of data sizes. Click the buttons to traverse the universe of data!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
with gr.Row():
|
| 88 |
-
unit_name_out = gr.Textbox(value=
|
| 89 |
-
analogy_out = gr.Textbox(value=
|
| 90 |
-
commentary_out = gr.Textbox(value=
|
|
|
|
| 91 |
with gr.Row():
|
| 92 |
smaller_btn = gr.Button("Go Smaller ⬇️", variant="secondary", size="lg")
|
| 93 |
larger_btn = gr.Button("Go Larger ⬆️", variant="primary", size="lg")
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
if __name__ == "__main__":
|
| 99 |
demo.launch()
|
|
|
|
| 1 |
+
# app.py (Final Version with gr.State for Robust State Management)
|
| 2 |
import gradio as gr
|
| 3 |
import tensorflow as tf
|
| 4 |
import pickle
|
|
|
|
| 22 |
print(f"FATAL ERROR loading files: {e}")
|
| 23 |
successor_model, predecessor_model = None, None
|
| 24 |
|
| 25 |
+
# --- 2. THE CORE PREDICTION LOGIC ---
|
| 26 |
+
# This function is the same, but it will now receive its input from the reliable gr.State
|
| 27 |
+
def predict_next_state(model, tokenizers, current_state_dict):
|
| 28 |
+
if not model or not tokenizers or not current_state_dict:
|
| 29 |
+
return {"error": "Model or state is not loaded"}, "Error", "Error", "Error"
|
| 30 |
|
| 31 |
+
# Prepare input data from the state dictionary
|
| 32 |
+
input_data = {
|
| 33 |
+
'current_unit_name': [current_state_dict['unit_name']],
|
| 34 |
+
'current_analogy': [current_state_dict['analogy']],
|
| 35 |
+
'current_commentary': [current_state_dict['commentary']]
|
| 36 |
+
}
|
| 37 |
processed_input = {}
|
| 38 |
for col, text_list in input_data.items():
|
| 39 |
sequences = tokenizers[col].texts_to_sequences(text_list)
|
| 40 |
padded_sequences = tf.keras.preprocessing.sequence.pad_sequences(sequences, maxlen=MAX_SEQ_LENGTH, padding='post')
|
| 41 |
processed_input[col] = padded_sequences
|
| 42 |
|
|
|
|
| 43 |
predictions = model.predict(processed_input)
|
| 44 |
|
| 45 |
+
# Decode prediction
|
| 46 |
target_texts = {}
|
| 47 |
output_cols = ['target_unit_name', 'target_analogy', 'target_commentary']
|
| 48 |
for i, col in enumerate(output_cols):
|
|
|
|
| 51 |
clean_text = ' '.join([word for word in predicted_sequence.split() if word not in ['<oov>', 'end']])
|
| 52 |
target_texts[col] = clean_text.strip()
|
| 53 |
|
|
|
|
|
|
|
| 54 |
print(f"Decoded Unit Name: {target_texts['target_unit_name']}")
|
| 55 |
+
|
| 56 |
+
# Create the new state dictionary
|
| 57 |
+
new_state = {
|
| 58 |
+
'unit_name': target_texts['target_unit_name'],
|
| 59 |
+
'analogy': target_texts['target_analogy'],
|
| 60 |
+
'commentary': target_texts['target_commentary']
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
# Handle "Infinity" Sentinel
|
| 64 |
+
if "end of knowledge" in new_state['unit_name'].lower():
|
| 65 |
direction = "larger" if model == successor_model else "smaller"
|
| 66 |
prefix = "Giga-" if direction == "larger" else "pico-"
|
| 67 |
+
new_state['unit_name'] = f"{prefix}{current_state_dict['unit_name']}"
|
| 68 |
+
new_state['analogy'] = "A procedurally generated unit beyond the AI's known universe."
|
| 69 |
+
new_state['commentary'] = "This represents a step into true infinity, where rules replace learned knowledge."
|
| 70 |
+
|
| 71 |
+
# Return the new state object and the values for the textboxes
|
| 72 |
+
return new_state, new_state['unit_name'], new_state['analogy'], new_state['commentary']
|
| 73 |
|
| 74 |
+
# --- WRAPPER FUNCTIONS ---
|
| 75 |
+
# They now take the state dictionary as input and return the new state dictionary
|
| 76 |
+
def go_larger(current_state):
|
| 77 |
print("\n>>> 'Go Larger' button clicked. Using SUCCESSOR model.")
|
| 78 |
+
return predict_next_state(successor_model, successor_tokenizers, current_state)
|
| 79 |
|
| 80 |
+
def go_smaller(current_state):
|
| 81 |
print("\n>>> 'Go Smaller' button clicked. Using PREDECESSOR model.")
|
| 82 |
+
return predict_next_state(predecessor_model, predecessor_tokenizers, current_state)
|
| 83 |
|
| 84 |
+
# --- 3. THE GRADIO USER INTERFACE (RE-ARCHITECTED) ---
|
| 85 |
+
initial_state = {
|
| 86 |
+
"unit_name": "Byte",
|
| 87 |
+
"analogy": "a single character of text, like 'R'",
|
| 88 |
+
"commentary": "From binary choices, a building block is formed, ready to hold a single, recognizable symbol."
|
| 89 |
+
}
|
| 90 |
|
| 91 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="sky")) as demo:
|
| 92 |
gr.Markdown("# 🤖 Digital Scale Explorer AI")
|
|
|
|
| 93 |
gr.Markdown("An AI trained from scratch to explore the infinite ladder of data sizes. Click the buttons to traverse the universe of data!")
|
| 94 |
+
|
| 95 |
+
# *** THIS IS THE KEY CHANGE ***
|
| 96 |
+
# Create an invisible component to reliably hold our state
|
| 97 |
+
app_state = gr.State(value=initial_state)
|
| 98 |
+
|
| 99 |
with gr.Row():
|
| 100 |
+
unit_name_out = gr.Textbox(value=initial_state['unit_name'], label="Unit Name", interactive=False)
|
| 101 |
+
analogy_out = gr.Textbox(value=initial_state['analogy'], label="Analogy", lines=4, interactive=False)
|
| 102 |
+
commentary_out = gr.Textbox(value=initial_state['commentary'], label="AI Commentary", lines=3, interactive=False)
|
| 103 |
+
|
| 104 |
with gr.Row():
|
| 105 |
smaller_btn = gr.Button("Go Smaller ⬇️", variant="secondary", size="lg")
|
| 106 |
larger_btn = gr.Button("Go Larger ⬆️", variant="primary", size="lg")
|
| 107 |
|
| 108 |
+
# --- The button clicks now use the app_state as their primary input and output ---
|
| 109 |
+
larger_btn.click(
|
| 110 |
+
fn=go_larger,
|
| 111 |
+
inputs=[app_state], # The INPUT is the reliable state object
|
| 112 |
+
# The OUTPUT is the new state object AND the values for the textboxes
|
| 113 |
+
outputs=[app_state, unit_name_out, analogy_out, commentary_out]
|
| 114 |
+
)
|
| 115 |
+
smaller_btn.click(
|
| 116 |
+
fn=go_smaller,
|
| 117 |
+
inputs=[app_state], # The INPUT is the reliable state object
|
| 118 |
+
outputs=[app_state, unit_name_out, analogy_out, commentary_out]
|
| 119 |
+
)
|
| 120 |
|
| 121 |
if __name__ == "__main__":
|
| 122 |
demo.launch()
|