File size: 15,479 Bytes
fbb3355 f945b6a fbb3355 f945b6a fbb3355 f945b6a fbb3355 f945b6a fbb3355 f945b6a fbb3355 591f159 f945b6a fbb3355 881d92c fbb3355 f945b6a 881d92c f945b6a fbb3355 f945b6a fbb3355 f945b6a fbb3355 f945b6a fbb3355 f945b6a fbb3355 f945b6a fbb3355 f945b6a fbb3355 f945b6a fbb3355 f945b6a fbb3355 f945b6a 0987ee1 fbb3355 0987ee1 fbb3355 f945b6a fbb3355 f945b6a fbb3355 f945b6a 0987ee1 f945b6a fbb3355 f945b6a fbb3355 f945b6a fbb3355 f945b6a 0987ee1 fbb3355 591f159 fbb3355 591f159 fbb3355 591f159 fbb3355 f945b6a fbb3355 0987ee1 fbb3355 0987ee1 881d92c fbb3355 f945b6a fbb3355 f945b6a fbb3355 881d92c f945b6a fbb3355 f945b6a fbb3355 881d92c fbb3355 f945b6a fbb3355 f945b6a fbb3355 591f159 fbb3355 0987ee1 f945b6a fbb3355 f945b6a 0987ee1 f945b6a fbb3355 f945b6a fbb3355 f945b6a fbb3355 f945b6a 591f159 fbb3355 f945b6a fbb3355 f945b6a 591f159 fbb3355 881d92c fbb3355 881d92c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
# --- Standard Library Imports ---
import os
import time
import traceback
import tempfile
import json
import math
import collections
import collections.abc # For Gradio compatibility with newer Python versions
# --- UI Framework ---
import gradio as gr
# --- Data Handling & Numerical Ops ---
import pandas as pd
import numpy as np
# --- Core Machine Learning (Scikit-learn) ---
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, LabelEncoder, OneHotEncoder
from sklearn.impute import SimpleImputer
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LogisticRegression, LinearRegression
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.svm import SVC, SVR
from sklearn.metrics import accuracy_score, classification_report, mean_squared_error, r2_score
from sklearn.datasets import make_classification, make_regression
import joblib
# --- ONNX Support for Model Interoperability ---
import skl2onnx
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType, StringTensorType
# --- Visualization ---
import matplotlib
matplotlib.use('Agg') # Use non-interactive backend for server environments
import matplotlib.pyplot as plt
# --- Graceful ONNX Runtime Handling ---
# This addresses the system-level ImportError on platforms like Hugging Face Spaces.
try:
import onnxruntime as rt
ONNX_RUNTIME_AVAILABLE = True
except ImportError:
ONNX_RUNTIME_AVAILABLE = False
print("Warning: onnxruntime could not be imported. ONNX model validation will be skipped.")
# --- End of Imports ---
# --- Global Variables & Constants ---
TEMP_DIR = "temp_outputs"
os.makedirs(TEMP_DIR, exist_ok=True)
MAX_GENERATED_ROWS = 50000
MAX_GENERATED_COLS = 100
# --- Helper Functions ---
def get_temp_filepath(filename_base, extension):
"""Generates a unique temporary filepath."""
clean_extension = extension.lstrip('.')
return os.path.join(TEMP_DIR, f"{filename_base}_{time.strftime('%Y%m%d-%H%M%S')}.{clean_extension}")
# --- Dataset and Preprocessing Logic ---
def generate_dataset_backend(task_type, n_samples, n_features, n_classes_or_informative, dataset_format):
"""Generates synthetic data based on user specifications."""
logs = "\n--- Generating Dataset ---\n"
n_samples = max(10, min(int(n_samples), MAX_GENERATED_ROWS))
n_features = max(1, min(int(n_features), MAX_GENERATED_COLS))
n_classes_or_informative = int(n_classes_or_informative)
df = None
try:
if task_type == "Tabular Classification":
X, y = make_classification(n_samples=n_samples, n_features=n_features, n_informative=max(1, n_features // 2),
n_redundant=0, n_classes=max(2, n_classes_or_informative), random_state=42)
df = pd.DataFrame(X, columns=[f'feature_{i}' for i in range(n_features)])
df['target'] = y
elif task_type == "Tabular Regression":
X, y = make_regression(n_samples=n_samples, n_features=n_features,
n_informative=max(1, min(n_features, n_classes_or_informative)), noise=10, random_state=42)
df = pd.DataFrame(X, columns=[f'feature_{i}' for i in range(n_features)])
df['target'] = y
if df is None:
raise NotImplementedError(f"Dataset generation for '{task_type}' is not implemented.")
logs += f"Generated data with shape: {df.shape}\n"
file_path = get_temp_filepath("generated_dataset", dataset_format)
if dataset_format == ".csv": df.to_csv(file_path, index=False)
elif dataset_format == ".json": df.to_json(file_path, orient='records', lines=True)
elif dataset_format == ".parquet": df.to_parquet(file_path, index=False)
logs += f"Dataset saved to temporary file: {os.path.basename(file_path)}\n"
return df.head(), df, logs, file_path
except Exception as e:
error_msg = f"Error generating dataset: {traceback.format_exc()}"
logs += error_msg + "\n"
return None, None, logs, None
# --- Core Training Functions ---
def train_model_sklearn(data_input, target_column, task_type, model_name, model_output_format, logs=""):
"""Handles the entire Scikit-learn training and evaluation pipeline."""
logs += f"\n--- Training Scikit-learn Model: {model_name} ---\n"
try:
# Load data if it's a filepath, otherwise use the DataFrame directly
df = data_input
if isinstance(data_input, str):
if data_input.endswith('.csv'): df = pd.read_csv(data_input)
elif data_input.endswith('.json'): df = pd.read_json(data_input, lines=True)
elif data_input.endswith('.parquet'): df = pd.read_parquet(data_input)
else: raise ValueError("Unsupported file type for upload.")
if target_column not in df.columns:
raise ValueError(f"Target column '{target_column}' not found.")
# Preprocessing
X = df.drop(columns=[target_column])
y = df[target_column]
numeric_features = X.select_dtypes(include=np.number).columns
categorical_features = X.select_dtypes(include='object').columns
preprocessor = ColumnTransformer(transformers=[
('num', Pipeline([('imputer', SimpleImputer(strategy='mean')), ('scaler', StandardScaler())]), numeric_features),
('cat', Pipeline([('imputer', SimpleImputer(strategy='most_frequent')), ('onehot', OneHotEncoder(handle_unknown='ignore'))]), categorical_features)
])
# Model Selection
if task_type == "Tabular Classification":
y = LabelEncoder().fit_transform(y)
models = {
"Logistic Regression": LogisticRegression(max_iter=1000, random_state=42),
"Random Forest Classifier": RandomForestClassifier(random_state=42),
"Support Vector Machine (SVM) Classifier": SVC(random_state=42, probability=True)
}
else: # Regression
models = {
"Linear Regression": LinearRegression(),
"Random Forest Regressor": RandomForestRegressor(random_state=42),
"Support Vector Machine (SVR) Regressor": SVR()
}
model = models[model_name]
# Create full pipeline
pipeline = Pipeline([('preprocessor', preprocessor), ('model', model)])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
logs += f"Data split into training ({X_train.shape}) and testing ({X_test.shape}) sets.\n"
# Training
start_time = time.time()
pipeline.fit(X_train, y_train)
logs += f"Training completed in {time.time() - start_time:.2f}s.\n"
# Evaluation
y_pred = pipeline.predict(X_test)
if task_type == "Tabular Classification":
acc = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred, zero_division=0)
metrics = f"Accuracy: {acc:.4f}\n\nClassification Report:\n{report}"
else:
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
metrics = f"Mean Squared Error: {mse:.4f}\nR² Score: {r2:.4f}"
logs += "\n--- Evaluation Metrics ---\n" + metrics + "\n"
# Model Saving
model_filename_base = f"sklearn_{model_name.replace(' ', '_').lower()}"
model_path = None
if model_output_format == ".pkl (Scikit-learn)":
model_path = get_temp_filepath(model_filename_base, "pkl")
joblib.dump(pipeline, model_path)
logs += f"Model pipeline saved to {os.path.basename(model_path)} as PKL.\n"
elif model_output_format == ".onnx (ONNX)":
model_path = get_temp_filepath(model_filename_base, "onnx")
initial_types = []
for col_name in X.columns:
if pd.api.types.is_numeric_dtype(X[col_name].dtype):
initial_types.append((col_name, FloatTensorType([None, 1])))
else:
initial_types.append((col_name, StringTensorType([None, 1])))
options = {'zipmap': False} if task_type == "Tabular Classification" else {}
onnx_model = convert_sklearn(pipeline, initial_types=initial_types, target_opset=12, options=options)
with open(model_path, "wb") as f: f.write(onnx_model.SerializeToString())
logs += f"Model pipeline saved to {os.path.basename(model_path)} as ONNX.\n"
if ONNX_RUNTIME_AVAILABLE:
sess = rt.InferenceSession(model_path)
logs += "ONNX model successfully loaded and validated with onnxruntime.\n"
else:
logs += "ONNX model validation skipped because onnxruntime is not available in this environment.\n"
return logs, metrics, model_path
except Exception as e:
error_msg = f"Scikit-learn training failed: {traceback.format_exc()}"
logs += error_msg + "\n"
return logs, error_msg, None
# --- Main Training Dispatcher ---
def train_model_wrapper(data_input, target_column, task_type, model_family, model_specific,
model_output_format, logs):
"""A wrapper to call the correct training function based on user choices."""
if data_input is None:
logs += "ERROR: No dataset has been generated or uploaded. Please go to Tab 2.\n"
return logs, "Error: No dataset available.", None, None
if model_family == "Scikit-learn (Classical ML)":
logs, metrics, model_path = train_model_sklearn(data_input, target_column, task_type, model_specific, model_output_format, logs)
return logs, metrics, model_path, None # No plot for sklearn
# Placeholder for future PyTorch integration
else:
logs += f"The selected model family '{model_family}' is not supported yet.\n"
return logs, "Error: Model family not supported.", None, None
# --- Gradio UI Definition ---
def update_model_options(task_choice, model_family_choice):
"""Dynamically updates the available models based on task and family."""
choices = []
if model_family_choice == "Scikit-learn (Classical ML)":
if task_choice == "Tabular Classification":
choices = ["Logistic Regression", "Random Forest Classifier", "Support Vector Machine (SVM) Classifier"]
elif task_choice == "Tabular Regression":
choices = ["Linear Regression", "Random Forest Regressor", "Support Vector Machine (SVR) Regressor"]
value = choices[0] if choices else None
return gr.update(choices=choices, value=value, visible=bool(choices))
def update_model_output_formats(model_family_choice):
"""Updates the output format options based on the model family."""
formats = []
if model_family_choice == "Scikit-learn (Classical ML)":
formats = [".pkl (Scikit-learn)", ".onnx (ONNX)"]
value = formats[0] if formats else None
return gr.update(choices=formats, value=value)
# The Gradio App Layout
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="orange")) as demo:
gr.Markdown("# 🧠 TrainAI ⚙️")
gr.Markdown("A simple interface to create, train, and download machine learning models.")
# State variables to hold data between interactions
generated_data_state = gr.State(None)
with gr.Tabs():
with gr.TabItem("1. Define Task & Model"):
with gr.Row():
task_type_dd = gr.Dropdown(["Tabular Classification", "Tabular Regression"], label="Select Task Type", value="Tabular Classification")
model_family_dd = gr.Dropdown(["Scikit-learn (Classical ML)"], label="Select Model Family", value="Scikit-learn (Classical ML)")
model_specific_dd = gr.Dropdown(label="Select Specific Model", choices=["Logistic Regression", "Random Forest Classifier", "Support Vector Machine (SVM) Classifier"], value="Logistic Regression", interactive=True)
with gr.TabItem("2. Configure Dataset"):
with gr.Row():
ds_gen_samples_num = gr.Number(label="# Samples", value=1000, minimum=10, step=100)
ds_gen_features_num = gr.Number(label="# Features", value=10, minimum=1, step=1)
ds_gen_classes_num = gr.Number(label="Classes (Classif) / Informative (Regr)", value=2, minimum=1, step=1)
ds_gen_format_dd = gr.Dropdown([".csv", ".json", ".parquet"], label="Generated Dataset Format", value=".csv")
generate_dataset_btn = gr.Button("Generate & Preview Dataset", variant="secondary")
target_column_name_txt = gr.Textbox(label="Target Column Name", value="target", interactive=True)
# --- FIX: Replaced 'height' with 'row_count' ---
dataset_preview_df = gr.DataFrame(label="Dataset Preview (First 5 Rows)", interactive=False, row_count=5)
# --- END FIX ---
generated_dataset_download_file = gr.File(label="Download Generated Dataset", interactive=False)
with gr.TabItem("3. Train Model & Get Results"):
model_output_format_dd = gr.Dropdown(label="Select Model Output Format", choices=[".pkl (Scikit-learn)", ".onnx (ONNX)"], value=".pkl (Scikit-learn)")
train_model_btn = gr.Button("🚀 Train Model", variant="primary")
gr.Markdown("---")
gr.Markdown("### Training Progress & Results")
training_log_txt = gr.Textbox(label="Training Log & Status", lines=15, interactive=False, max_lines=50)
evaluation_metrics_txt = gr.Textbox(label="Evaluation Metrics", lines=7, interactive=False)
download_trained_model_file = gr.File(label="Download Trained Model", interactive=False)
loss_plot_img = gr.Plot(label="Training Loss Curve (PyTorch only)", visible=False) # Hide as PyTorch is not used
# --- Event Handlers ---
# Update model choices when task or family changes
task_type_dd.change(fn=update_model_options, inputs=[task_type_dd, model_family_dd], outputs=model_specific_dd)
model_family_dd.change(fn=update_model_options, inputs=[task_type_dd, model_family_dd], outputs=model_specific_dd)
# Update output formats when family changes
model_family_dd.change(fn=update_model_output_formats, inputs=model_family_dd, outputs=model_output_format_dd)
# Dataset generation button
generate_dataset_btn.click(
fn=generate_dataset_backend,
inputs=[task_type_dd, ds_gen_samples_num, ds_gen_features_num, ds_gen_classes_num, ds_gen_format_dd],
outputs=[dataset_preview_df, generated_data_state, training_log_txt, generated_dataset_download_file]
)
# Main training button
train_model_btn.click(
fn=train_model_wrapper,
inputs=[generated_data_state, target_column_name_txt, task_type_dd, model_family_dd, model_specific_dd, model_output_format_dd, training_log_txt],
outputs=[training_log_txt, evaluation_metrics_txt, download_trained_model_file, loss_plot_img]
)
# Launch the application
demo.queue().launch(debug=True, show_error=True) |