Spaces:
Sleeping
Sleeping
| import torch | |
| from transformers import AutoProcessor, AutoModelForVision2Seq | |
| import gradio as gr | |
| from PIL import Image | |
| # Load Kosmos-2 Model | |
| MODEL_NAME = "microsoft/kosmos-2-patch14-224" | |
| processor = AutoProcessor.from_pretrained(MODEL_NAME) | |
| model = AutoModelForVision2Seq.from_pretrained(MODEL_NAME) | |
| # Ensure model is on GPU if available | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model.to(device) | |
| def analyze_image(image, prompt): | |
| """Process an image with a text prompt using Kosmos-2.""" | |
| try: | |
| image = Image.fromarray(image) # Convert to PIL Image | |
| inputs = processor(images=image, text=prompt, return_tensors="pt").to(device) | |
| # Generate output | |
| output = model.generate(**inputs, max_new_tokens=100) # Allow up to 100 new tokens | |
| result_text = processor.batch_decode(output, skip_special_tokens=True)[0] | |
| return result_text | |
| except Exception as e: | |
| return f"Error: {str(e)}" | |
| # Gradio Interface | |
| iface = gr.Interface( | |
| fn=analyze_image, | |
| inputs=[gr.Image(type="numpy"), gr.Textbox(label="Prompt")], | |
| outputs=gr.Textbox(label="Generated Response"), | |
| title="Kosmos-2 Image Reasoning", | |
| description="Upload an image and provide a text prompt. Kosmos-2 will generate insights based on the image and text input.", | |
| ) | |
| # Launch the Gradio app | |
| iface.launch() | |