# CLAUDE.md This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository. ## Overview Z-Image-Turbo is a Gradio-based Hugging Face Space for image generation using the Z-Image diffusion transformer model. It provides a web interface for text-to-image generation with optional prompt enhancement via API. ## Running the Application **Start the Gradio app:** ```bash python app.py ``` The app will launch with MCP server support enabled and be accessible via the Gradio interface. ## Environment Variables Required environment variables (set these before running): - `MODEL_PATH`: Path or HF model ID (default: "Tongyi-MAI/Z-Image-Turbo") - `HF_TOKEN`: Hugging Face token for model access - `DASHSCOPE_API_KEY`: Optional, for prompt enhancement feature (currently disabled in UI) - `ENABLE_COMPILE`: Enable torch.compile optimizations (default: "true") - `ENABLE_WARMUP`: Warmup model on startup (default: "true") - `ATTENTION_BACKEND`: Attention implementation (default: "flash_3") ## Architecture ### Core Components **app.py** - Main application file containing: - Model loading and initialization (`load_models`, `init_app`) - Image generation pipeline using ZImagePipeline from diffusers - Gradio UI with resolution presets and generation controls - Optional prompt enhancement via DashScope API (currently disabled in UI) - Zero GPU integration with AoTI (Ahead of Time Inductor) compilation **pe.py** - Contains `prompt_template` for the prompt expander, a Chinese language system prompt that guides LLMs to transform user prompts into detailed visual descriptions suitable for image generation models. ### Key Functions **`generate(prompt, resolution, seed, steps, shift, enhance, random_seed, gallery_images, progress)`** (app.py:366) - Main generation function decorated with `@spaces.GPU` - Processes prompt, applies settings, generates image - Returns updated gallery, seed used - The `enhance` parameter is currently disabled in the UI but functional in code **`load_models(model_path, enable_compile, attention_backend)`** (app.py:100) - Loads VAE, text encoder, tokenizer, and transformer - Applies torch.compile optimizations if enabled - Configures attention backend (native/flash_3) **`warmup_model(pipe, resolutions)`** (app.py:205) - Pre-warms model for all resolution configurations - Reduces first-generation latency ### Resolution System The app supports two resolution categories (1024 and 1280) with multiple aspect ratios: - 1:1, 9:7, 7:9, 4:3, 3:4, 3:2, 2:3, 16:9, 9:16, 21:9, 9:21 - Resolutions are stored in `RES_CHOICES` dict and parsed via `get_resolution()` ### Prompt Enhancement (Currently Disabled) The `PromptExpander` and `APIPromptExpander` classes provide optional prompt enhancement via DashScope API: - Backend: OpenAI-compatible API at dashscope.aliyuncs.com - Model: qwen3-max-preview - System prompt from `pe.prompt_template` guides detailed visual description generation - UI controls are commented out but underlying code is functional ## Dependencies Install via: ```bash pip install -r requirements.txt ``` Key dependencies: - gradio (UI framework) - torch, transformers, diffusers (ML models) - spaces (Hugging Face Spaces integration) - openai (for optional prompt enhancement) - Custom diffusers fork from GitHub with Z-Image support ## Model Details - Architecture: Single-stream diffusion transformer (Z-Image) - Scheduler: FlowMatchEulerDiscreteScheduler with configurable shift parameter - Precision: bfloat16 - Device: CUDA required - Attention: Configurable backend (native or flash_3) ## Zero GPU Integration The app uses Hugging Face Spaces Zero GPU features: - `@spaces.GPU` decorator on generate function - AoTI (Ahead of Time Inductor) compilation for transformer blocks (app.py:458-459) - Pre-compiled blocks loaded from "zerogpu-aoti/Z-Image" with flash_attention_3 variant