Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
import onnxruntime as rt
|
| 3 |
from transformers import AutoTokenizer
|
| 4 |
import torch, json
|
|
@@ -23,4 +23,47 @@ def classify_movie_genre(sinopse):
|
|
| 23 |
|
| 24 |
label = gr.outputs.Label(num_top_classes=5)
|
| 25 |
iface = gr.Interface(fn=classify_movie_genre, inputs="text", outputs=label)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
iface.launch(inline=False)
|
|
|
|
| 1 |
+
"""import gradio as gr
|
| 2 |
import onnxruntime as rt
|
| 3 |
from transformers import AutoTokenizer
|
| 4 |
import torch, json
|
|
|
|
| 23 |
|
| 24 |
label = gr.outputs.Label(num_top_classes=5)
|
| 25 |
iface = gr.Interface(fn=classify_movie_genre, inputs="text", outputs=label)
|
| 26 |
+
iface.launch(inline=False)"""
|
| 27 |
+
|
| 28 |
+
import gradio as gr
|
| 29 |
+
import onnxruntime as rt
|
| 30 |
+
from transformers import AutoTokenizer
|
| 31 |
+
import torch, json
|
| 32 |
+
|
| 33 |
+
tokenizer = AutoTokenizer.from_pretrained("neuralmind/bert-large-portuguese-cased")
|
| 34 |
+
|
| 35 |
+
with open("genre_types_encoded.json", "r") as fp:
|
| 36 |
+
encode_genre_types = json.load(fp)
|
| 37 |
+
|
| 38 |
+
genres = list(encode_genre_types.keys())
|
| 39 |
+
|
| 40 |
+
inf_session = rt.InferenceSession('movie-classifier-quantized.onnx')
|
| 41 |
+
input_name = inf_session.get_inputs()[0].name
|
| 42 |
+
output_name = inf_session.get_outputs()[0].name
|
| 43 |
+
|
| 44 |
+
def classify_movie_genre(sinopse):
|
| 45 |
+
input_ids = tokenizer(sinopse)['input_ids'][:512]
|
| 46 |
+
logits = inf_session.run([output_name], {input_name: [input_ids]})[0]
|
| 47 |
+
logits = torch.FloatTensor(logits)
|
| 48 |
+
probs = torch.sigmoid(logits)[0]
|
| 49 |
+
return dict(zip(genres, map(float, probs)))
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
app_examples = [
|
| 53 |
+
["asasasa"],
|
| 54 |
+
["ddddd"],
|
| 55 |
+
["fffff"],
|
| 56 |
+
["ggggg"],
|
| 57 |
+
["aaaaaa"]
|
| 58 |
+
|
| 59 |
+
]
|
| 60 |
+
|
| 61 |
+
inputs = [
|
| 62 |
+
gr.Textbox(label="text", value=app_examples[0][0]),
|
| 63 |
+
|
| 64 |
+
]
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
label = gr.outputs.Label(num_top_classes=4)
|
| 68 |
+
iface = gr.Interface(fn=classify_movie_genre, inputs=inputs, outputs=label, examples=app_examples)
|
| 69 |
iface.launch(inline=False)
|