telcom's picture
Update app.py
ef8496d verified
# app.py
# ============================================================
# IMPORTANT: imports order matters for Hugging Face Spaces
# ============================================================
import os
import gc
import random
import warnings
import logging
import inspect
# ---- Spaces GPU decorator (must be imported early) ----------
try:
import spaces # noqa: F401
SPACES_AVAILABLE = True
except Exception:
SPACES_AVAILABLE = False
import gradio as gr
import numpy as np
from PIL import Image
import torch
from huggingface_hub import login
# ============================================================
# Try importing Z-Image pipelines (requires diffusers>=0.36.0)
# ============================================================
ZIMAGE_AVAILABLE = True
ZIMAGE_IMPORT_ERROR = None
try:
from diffusers import (
ZImagePipeline,
ZImageImg2ImgPipeline,
FlowMatchEulerDiscreteScheduler,
)
except Exception as e:
ZIMAGE_AVAILABLE = False
ZIMAGE_IMPORT_ERROR = repr(e)
# ============================================================
# Config
# ============================================================
MODEL_PATH = os.environ.get("MODEL_PATH", "telcom/dee-z-image").strip()
ATTENTION_BACKEND = os.environ.get("ATTENTION_BACKEND", "flash_3").strip()
ENABLE_COMPILE = os.environ.get("ENABLE_COMPILE", "false").lower() == "true"
HF_TOKEN = os.getenv("HF_TOKEN", "").strip()
if HF_TOKEN:
login(token=HF_TOKEN)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
warnings.filterwarnings("ignore")
logging.getLogger("transformers").setLevel(logging.ERROR)
MAX_SEED = np.iinfo(np.int32).max
# ============================================================
# Device & dtype
# ============================================================
cuda_available = torch.cuda.is_available()
device = torch.device("cuda" if cuda_available else "cpu")
if cuda_available and hasattr(torch.cuda, "is_bf16_supported") and torch.cuda.is_bf16_supported():
dtype = torch.bfloat16
elif cuda_available:
dtype = torch.float16
else:
dtype = torch.float32
MAX_IMAGE_SIZE = 1536 if cuda_available else 768
fallback_msg = ""
if not cuda_available:
fallback_msg = "GPU unavailable. Running in CPU fallback mode (slow)."
# ============================================================
# Load pipelines
# ============================================================
pipe_txt2img = None
pipe_img2img = None
model_loaded = False
load_error = None
def _set_attention_backend_best_effort(p):
try:
if hasattr(p, "transformer") and hasattr(p.transformer, "set_attention_backend"):
p.transformer.set_attention_backend(ATTENTION_BACKEND)
except Exception:
pass
def _compile_best_effort(p):
if not (ENABLE_COMPILE and device.type == "cuda"):
return
try:
if hasattr(p, "transformer"):
p.transformer = torch.compile(
p.transformer,
mode="max-autotune-no-cudagraphs",
fullgraph=False,
)
except Exception:
pass
if ZIMAGE_AVAILABLE:
try:
fp_kwargs = {
"torch_dtype": dtype,
"use_safetensors": True,
}
if HF_TOKEN:
fp_kwargs["token"] = HF_TOKEN
pipe_txt2img = ZImagePipeline.from_pretrained(MODEL_PATH, **fp_kwargs).to(device)
_set_attention_backend_best_effort(pipe_txt2img)
_compile_best_effort(pipe_txt2img)
try:
pipe_txt2img.set_progress_bar_config(disable=True)
except Exception:
pass
# Share weights/components with img2img pipeline
pipe_img2img = ZImageImg2ImgPipeline(**pipe_txt2img.components).to(device)
_set_attention_backend_best_effort(pipe_img2img)
try:
pipe_img2img.set_progress_bar_config(disable=True)
except Exception:
pass
model_loaded = True
except Exception as e:
load_error = repr(e)
model_loaded = False
else:
load_error = (
"Z-Image pipelines not available in your diffusers install.\n\n"
f"Import error:\n{ZIMAGE_IMPORT_ERROR}\n\n"
"Fix: set requirements.txt to diffusers==0.36.0 (or install Diffusers from source)."
)
model_loaded = False
# ============================================================
# Helpers
# ============================================================
def make_error_image(w: int, h: int) -> Image.Image:
return Image.new("RGB", (int(w), int(h)), (18, 18, 22))
def prep_init_image(img: Image.Image, width: int, height: int) -> Image.Image:
if img is None:
return None
if not isinstance(img, Image.Image):
return None
img = img.convert("RGB")
if img.size != (width, height):
img = img.resize((width, height), Image.LANCZOS)
return img
def _call_pipeline(pipe, kwargs: dict):
"""
Robust call: only pass kwargs the pipeline actually accepts.
This avoids crashes if a particular build does not support negative_prompt, etc.
"""
try:
sig = inspect.signature(pipe.__call__)
allowed = set(sig.parameters.keys())
filtered = {k: v for k, v in kwargs.items() if k in allowed and v is not None}
return pipe(**filtered)
except Exception:
# Fallback: try raw kwargs (some pipelines use **kwargs internally)
return pipe(**{k: v for k, v in kwargs.items() if v is not None})
# ============================================================
# Inference
# ============================================================
def _infer_impl(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
shift,
max_sequence_length,
init_image,
strength,
):
width = int(width)
height = int(height)
seed = int(seed)
if not model_loaded:
return make_error_image(width, height), f"Model load failed: {load_error}"
prompt = (prompt or "").strip()
if not prompt:
return make_error_image(width, height), "Error: prompt is empty."
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
status = f"Seed: {seed}"
if fallback_msg:
status += f" | {fallback_msg}"
gs = float(guidance_scale)
steps = int(num_inference_steps)
msl = int(max_sequence_length)
st = float(strength)
neg = (negative_prompt or "").strip()
if not neg:
neg = None
init_image = prep_init_image(init_image, width, height)
# Update scheduler (shift) per run
try:
scheduler = FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000, shift=float(shift))
pipe_txt2img.scheduler = scheduler
pipe_img2img.scheduler = scheduler
except Exception:
pass
try:
base_kwargs = dict(
prompt=prompt,
height=height,
width=width,
guidance_scale=gs,
num_inference_steps=steps,
generator=generator,
max_sequence_length=msl,
)
# only passed if supported by the pipeline
if neg is not None:
base_kwargs["negative_prompt"] = neg
with torch.inference_mode():
if device.type == "cuda":
with torch.autocast("cuda", dtype=dtype):
if init_image is not None:
out = _call_pipeline(
pipe_img2img,
{**base_kwargs, "image": init_image, "strength": st},
)
else:
out = _call_pipeline(pipe_txt2img, base_kwargs)
else:
if init_image is not None:
out = _call_pipeline(
pipe_img2img,
{**base_kwargs, "image": init_image, "strength": st},
)
else:
out = _call_pipeline(pipe_txt2img, base_kwargs)
img = out.images[0]
return img, status
except Exception as e:
return make_error_image(width, height), f"Error: {type(e).__name__}: {e}"
finally:
gc.collect()
if device.type == "cuda":
torch.cuda.empty_cache()
if SPACES_AVAILABLE:
@spaces.GPU
def infer(*args, **kwargs):
return _infer_impl(*args, **kwargs)
else:
def infer(*args, **kwargs):
return _infer_impl(*args, **kwargs)
# ============================================================
# UI (simple black style like your SDXL example)
# ============================================================
CSS = """
body {
background: #000;
color: #fff;
}
"""
with gr.Blocks(title="Z-Image txt2img + img2img") as demo:
gr.HTML(f"<style>{CSS}</style>")
if fallback_msg:
gr.Markdown(f"**{fallback_msg}**")
if not model_loaded:
gr.Markdown(f"⚠️ Model failed to load:\n\n{load_error}")
gr.Markdown("## Z-Image Generator (txt2img + img2img)")
prompt = gr.Textbox(label="Prompt", lines=2)
init_image = gr.Image(label="Initial image (optional)", type="pil")
run_button = gr.Button("Generate")
result = gr.Image(label="Result")
status = gr.Markdown("")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(label="Negative prompt (optional)")
seed = gr.Slider(0, MAX_SEED, step=1, value=0, label="Seed")
randomize_seed = gr.Checkbox(value=True, label="Randomize seed")
width = gr.Slider(256, MAX_IMAGE_SIZE, step=64, value=1024, label="Width")
height = gr.Slider(256, MAX_IMAGE_SIZE, step=64, value=1024, label="Height")
guidance_scale = gr.Slider(0.0, 10.0, step=0.1, value=0.0, label="Guidance scale")
num_inference_steps = gr.Slider(1, 100, step=1, value=8, label="Steps")
shift = gr.Slider(1.0, 10.0, step=0.1, value=3.0, label="Time shift")
max_sequence_length = gr.Slider(64, 512, step=64, value=512, label="Max sequence length")
strength = gr.Slider(0.0, 1.0, step=0.05, value=0.6, label="Image strength (img2img)")
run_button.click(
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
shift,
max_sequence_length,
init_image,
strength,
],
outputs=[result, status],
)
if __name__ == "__main__":
demo.queue().launch(ssr_mode=False)