Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
import gc
|
| 4 |
+
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import numpy as np
|
| 7 |
+
from PIL import Image
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
from diffusers import (
|
| 11 |
+
StableDiffusionXLPipeline,
|
| 12 |
+
StableDiffusionXLImg2ImgPipeline,
|
| 13 |
+
EulerAncestralDiscreteScheduler,
|
| 14 |
+
)
|
| 15 |
+
from huggingface_hub import login
|
| 16 |
+
|
| 17 |
+
# ============================================================
|
| 18 |
+
# GPU decorator (optional)
|
| 19 |
+
# ============================================================
|
| 20 |
+
try:
|
| 21 |
+
import spaces
|
| 22 |
+
GPU_DECORATOR = spaces.GPU
|
| 23 |
+
except Exception:
|
| 24 |
+
def GPU_DECORATOR(fn):
|
| 25 |
+
return fn
|
| 26 |
+
|
| 27 |
+
from compel import CompelForSDXL
|
| 28 |
+
|
| 29 |
+
MODEL_ID = "telcom/dee-unlearning-tiny-sd"
|
| 30 |
+
REVISION="main"
|
| 31 |
+
|
| 32 |
+
HF_TOKEN = os.getenv("HF_TOKEN", "").strip()
|
| 33 |
+
if HF_TOKEN:
|
| 34 |
+
login(token=HF_TOKEN)
|
| 35 |
+
|
| 36 |
+
# ============================================================
|
| 37 |
+
# Detect device
|
| 38 |
+
# ============================================================
|
| 39 |
+
cuda_available = torch.cuda.is_available()
|
| 40 |
+
device = torch.device("cuda" if cuda_available else "cpu")
|
| 41 |
+
dtype = torch.float16 if cuda_available else torch.float32
|
| 42 |
+
|
| 43 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 44 |
+
MAX_IMAGE_SIZE = 1216 if cuda_available else 768 # CPU smaller
|
| 45 |
+
|
| 46 |
+
pipe_txt2img = None
|
| 47 |
+
pipe_img2img = None
|
| 48 |
+
compel = None
|
| 49 |
+
model_loaded = False
|
| 50 |
+
load_error = None
|
| 51 |
+
fallback_msg = ""
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
# ============================================================
|
| 55 |
+
# Load model (txt2img + img2img sharing weights)
|
| 56 |
+
# ============================================================
|
| 57 |
+
try:
|
| 58 |
+
from_pretrained_kwargs = dict(
|
| 59 |
+
torch_dtype=dtype,
|
| 60 |
+
use_safetensors=True,
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
if cuda_available:
|
| 64 |
+
from_pretrained_kwargs["variant"] = "fp16"
|
| 65 |
+
|
| 66 |
+
if HF_TOKEN:
|
| 67 |
+
from_pretrained_kwargs["token"] = HF_TOKEN
|
| 68 |
+
|
| 69 |
+
# Base txt2img pipeline revision=REVISION,
|
| 70 |
+
pipe_txt2img = StableDiffusionXLPipeline.from_pretrained(
|
| 71 |
+
MODEL_ID, revision=REVISION, **from_pretrained_kwargs
|
| 72 |
+
)
|
| 73 |
+
pipe_txt2img.scheduler = EulerAncestralDiscreteScheduler.from_config(
|
| 74 |
+
pipe_txt2img.scheduler.config
|
| 75 |
+
)
|
| 76 |
+
pipe_txt2img = pipe_txt2img.to(device)
|
| 77 |
+
|
| 78 |
+
# Memory opts
|
| 79 |
+
try:
|
| 80 |
+
pipe_txt2img.enable_vae_slicing()
|
| 81 |
+
except Exception:
|
| 82 |
+
pass
|
| 83 |
+
try:
|
| 84 |
+
pipe_txt2img.enable_attention_slicing()
|
| 85 |
+
except Exception:
|
| 86 |
+
pass
|
| 87 |
+
try:
|
| 88 |
+
pipe_txt2img.enable_xformers_memory_efficient_attention()
|
| 89 |
+
except Exception:
|
| 90 |
+
pass
|
| 91 |
+
|
| 92 |
+
pipe_txt2img.set_progress_bar_config(disable=True)
|
| 93 |
+
|
| 94 |
+
# Create img2img pipeline from txt2img components (no extra weights)
|
| 95 |
+
pipe_img2img = StableDiffusionXLImg2ImgPipeline(**pipe_txt2img.components)
|
| 96 |
+
pipe_img2img.scheduler = EulerAncestralDiscreteScheduler.from_config(
|
| 97 |
+
pipe_img2img.scheduler.config
|
| 98 |
+
)
|
| 99 |
+
pipe_img2img = pipe_img2img.to(device)
|
| 100 |
+
|
| 101 |
+
try:
|
| 102 |
+
compel = CompelForSDXL(pipe_txt2img, device=str(device))
|
| 103 |
+
except TypeError:
|
| 104 |
+
compel = CompelForSDXL(pipe_txt2img)
|
| 105 |
+
|
| 106 |
+
model_loaded = True
|
| 107 |
+
|
| 108 |
+
except Exception as e:
|
| 109 |
+
load_error = repr(e)
|
| 110 |
+
model_loaded = False
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
if not cuda_available:
|
| 114 |
+
fallback_msg = "GPU unavailable. Running in CPU fallback mode (slower, smaller images)."
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
# ============================================================
|
| 118 |
+
# Error image
|
| 119 |
+
# ============================================================
|
| 120 |
+
def _make_error_image(w, h, text):
|
| 121 |
+
img = Image.new("RGB", (w, h), (18, 18, 22))
|
| 122 |
+
return img
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
# ============================================================
|
| 126 |
+
# Inference (txt2img or img2img depending on init_image)
|
| 127 |
+
# ============================================================
|
| 128 |
+
@GPU_DECORATOR
|
| 129 |
+
def infer(
|
| 130 |
+
prompt,
|
| 131 |
+
negative_prompt,
|
| 132 |
+
seed,
|
| 133 |
+
randomize_seed,
|
| 134 |
+
width,
|
| 135 |
+
height,
|
| 136 |
+
guidance_scale,
|
| 137 |
+
num_inference_steps,
|
| 138 |
+
init_image, # new: optional image
|
| 139 |
+
strength, # new: img2img strength
|
| 140 |
+
):
|
| 141 |
+
width = int(width)
|
| 142 |
+
height = int(height)
|
| 143 |
+
seed = int(seed)
|
| 144 |
+
|
| 145 |
+
if not model_loaded or pipe_txt2img is None or pipe_img2img is None or compel is None:
|
| 146 |
+
msg = "Model failed to load."
|
| 147 |
+
if load_error:
|
| 148 |
+
msg += f" (details: {load_error})"
|
| 149 |
+
return _make_error_image(width, height, msg), msg
|
| 150 |
+
|
| 151 |
+
# Randomize seed if requested
|
| 152 |
+
if randomize_seed:
|
| 153 |
+
seed = random.randint(0, MAX_SEED)
|
| 154 |
+
|
| 155 |
+
if device.type == "cuda":
|
| 156 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
| 157 |
+
else:
|
| 158 |
+
generator = torch.Generator().manual_seed(seed)
|
| 159 |
+
|
| 160 |
+
status = f"Seed: {seed}"
|
| 161 |
+
if fallback_msg:
|
| 162 |
+
status += f" | {fallback_msg}"
|
| 163 |
+
|
| 164 |
+
try:
|
| 165 |
+
with torch.inference_mode():
|
| 166 |
+
conditioning = compel(prompt, negative_prompt=negative_prompt)
|
| 167 |
+
|
| 168 |
+
common_kwargs = dict(
|
| 169 |
+
prompt_embeds=conditioning.embeds,
|
| 170 |
+
pooled_prompt_embeds=conditioning.pooled_embeds,
|
| 171 |
+
negative_prompt_embeds=conditioning.negative_embeds,
|
| 172 |
+
negative_pooled_prompt_embeds=conditioning.negative_pooled_embeds,
|
| 173 |
+
guidance_scale=float(guidance_scale),
|
| 174 |
+
num_inference_steps=int(num_inference_steps),
|
| 175 |
+
generator=generator,
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
if device.type == "cuda":
|
| 179 |
+
with torch.autocast("cuda", dtype=dtype):
|
| 180 |
+
|
| 181 |
+
# If init_image is provided, use img2img
|
| 182 |
+
if init_image is not None:
|
| 183 |
+
image = pipe_img2img(
|
| 184 |
+
image=init_image,
|
| 185 |
+
strength=float(strength),
|
| 186 |
+
**common_kwargs,
|
| 187 |
+
).images[0]
|
| 188 |
+
else:
|
| 189 |
+
image = pipe_txt2img(
|
| 190 |
+
width=width,
|
| 191 |
+
height=height,
|
| 192 |
+
**common_kwargs,
|
| 193 |
+
).images[0]
|
| 194 |
+
else:
|
| 195 |
+
if init_image is not None:
|
| 196 |
+
image = pipe_img2img(
|
| 197 |
+
image=init_image,
|
| 198 |
+
strength=float(strength),
|
| 199 |
+
**common_kwargs,
|
| 200 |
+
).images[0]
|
| 201 |
+
else:
|
| 202 |
+
image = pipe_txt2img(
|
| 203 |
+
width=width,
|
| 204 |
+
height=height,
|
| 205 |
+
**common_kwargs,
|
| 206 |
+
).images[0]
|
| 207 |
+
|
| 208 |
+
return image, status
|
| 209 |
+
|
| 210 |
+
except Exception as e:
|
| 211 |
+
msg = f"Error during generation: {type(e).__name__}: {e}"
|
| 212 |
+
return _make_error_image(width, height, msg), msg
|
| 213 |
+
|
| 214 |
+
finally:
|
| 215 |
+
gc.collect()
|
| 216 |
+
if device.type == "cuda":
|
| 217 |
+
torch.cuda.empty_cache()
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
# ============================================================
|
| 221 |
+
# UI
|
| 222 |
+
# ============================================================
|
| 223 |
+
|
| 224 |
+
CSS = """
|
| 225 |
+
body{
|
| 226 |
+
background:#000;
|
| 227 |
+
color:#fff;
|
| 228 |
+
}
|
| 229 |
+
"""
|
| 230 |
+
|
| 231 |
+
with gr.Blocks(title="Text to Image / Image to Image") as demo:
|
| 232 |
+
|
| 233 |
+
gr.HTML(f"<style>{CSS}</style>")
|
| 234 |
+
|
| 235 |
+
with gr.Column():
|
| 236 |
+
|
| 237 |
+
# banner first
|
| 238 |
+
if fallback_msg:
|
| 239 |
+
gr.Markdown(f"**{fallback_msg}**")
|
| 240 |
+
|
| 241 |
+
if not model_loaded:
|
| 242 |
+
gr.Markdown(
|
| 243 |
+
f"⚠️ **Model failed to load.**\n\nDetails: {load_error}",
|
| 244 |
+
elem_classes=["small-note"],
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
gr.Markdown("## SDXL Generator (txt2img + img2img)")
|
| 248 |
+
|
| 249 |
+
prompt = gr.Textbox(
|
| 250 |
+
label="Prompt",
|
| 251 |
+
placeholder="Enter your prompt...",
|
| 252 |
+
lines=2,
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
# NEW: optional initial image for img2img
|
| 256 |
+
init_image = gr.Image(
|
| 257 |
+
label="Initial image (optional)",
|
| 258 |
+
type="pil",
|
| 259 |
+
)
|
| 260 |
+
|
| 261 |
+
run_button = gr.Button("Generate")
|
| 262 |
+
result = gr.Image(label="Result")
|
| 263 |
+
status = gr.Markdown("")
|
| 264 |
+
|
| 265 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 266 |
+
negative_prompt = gr.Textbox(label="Negative prompt", value="")
|
| 267 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
| 268 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 269 |
+
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512)
|
| 270 |
+
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512)
|
| 271 |
+
guidance_scale = gr.Slider(label="Guidance scale", minimum=0, maximum=20, step=0.1, value=7)
|
| 272 |
+
num_inference_steps = gr.Slider(label="Steps", minimum=1, maximum=40, step=1, value=20)
|
| 273 |
+
|
| 274 |
+
# NEW: strength for img2img
|
| 275 |
+
strength = gr.Slider(
|
| 276 |
+
label="Image strength (for img2img)",
|
| 277 |
+
minimum=0.0,
|
| 278 |
+
maximum=1.0,
|
| 279 |
+
step=0.05,
|
| 280 |
+
value=0.7,
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
run_button.click(
|
| 284 |
+
fn=infer,
|
| 285 |
+
inputs=[
|
| 286 |
+
prompt,
|
| 287 |
+
negative_prompt,
|
| 288 |
+
seed,
|
| 289 |
+
randomize_seed,
|
| 290 |
+
width,
|
| 291 |
+
height,
|
| 292 |
+
guidance_scale,
|
| 293 |
+
num_inference_steps,
|
| 294 |
+
init_image,
|
| 295 |
+
strength,
|
| 296 |
+
],
|
| 297 |
+
outputs=[result, status],
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
demo.queue().launch(ssr_mode=False)
|